Skip to main content
×
×
Home

UK Food Standards Agency α-linolenic acid workshop report

  • Peter Sanderson (a1), Yvonne E. Finnegan (a2), Christine M. Williams (a2), Philip C. Calder (a3), Graham C. Burdge (a3), Stephen A. Wootton (a3), Bruce A. Griffin (a4), D. Joe Millward (a4), Nicholas C. Pegge (a5) and Wanda J. E. Bemelmans (a6)...
Abstract

The UK Food Standards Agency convened a group of expert scientists to review current research investigating whether n-3 polyunsaturated fatty acids (PUFA) from plant oils (α-linolenic acid; ALA) were as beneficial to cardiovascular health as the n-3 PUFA from the marine oils, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The workshop also aimed to establish priorities for future research. Dietary intake of ALA has been associated with a beneficial effect on CHD; however, the results from studies investigating the effects of ALA supplementation on CHD risk factors have proved equivocal. The studies presented as part of the present workshop suggested little, if any, benefit of ALA, relative to linoleic acid, on risk factors for cardiovascular disease; the effects observed with fish-oil supplementation were not replicated by ALA supplementation. There is a need, therefore, to first prove the efficacy of ALA supplementation on cardiovascular disease, before further investigating effects on cardiovascular risk factors. The workshop considered that a beneficial effect of ALA on the secondary prevention of CHD still needed to be established, and there was no reason to look further at existing CHD risk factors in relation to ALA supplementation. The workshop also highlighted the possibility of feeding livestock ALA-rich oils to provide a means of increasing the dietary intake in human consumers of EPA and DHA.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      UK Food Standards Agency α-linolenic acid workshop report
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      UK Food Standards Agency α-linolenic acid workshop report
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      UK Food Standards Agency α-linolenic acid workshop report
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Dr Peter Sanderson, fax +44 20 7276 8906, email peter.sanderson@foodstandards.gsi.gov.uk
References
Hide All
Abelow, BJ, Holford, TR & Insogna, KL (1992) Cross-cultural association between dietary animal protein and hip fracture: a hypothesis. Calcified Tissue International 50, 1418.
Albright, F, Smith, PH & Richardson, AM (1941) Postmenopausal osteoporosis. Journal of the American Medical Association 116, 24652474.
Allen, LH, Oddoye, EA & Margen, S (1979) Protein-induced hypercalciuria: a longer term study. American Journal of Clinical Nutrition 32, 741749.
Aspray, TJ, Prentice, A, Cole, TJ, Sawo, Y, Reeve, J & Francis, RM (1996) Low bone mineral content is common but osteoporotic fractures are rare in elderly rural Gambian women. Journal of Bone and Mineral Research 11, 10191025.
Barzel, US (1995) The skeleton as an ion exchange system: implications for the role of acid–base imbalance in the genesis of osteoporosis. Journal of Bone and Mineral Research 10, 14311436.
Barzel, US & Massey, LK (1998) Excess dietary protein can adversely affect bone. Journal of Nutrition 128, 10511053.
Bass, S, Delmas, PD, Pearce, G, Hendrich, E, Tabensky, A & Seeman, E (1999) The differing tempo of growth in bone size, mass, and density in girls is region-specific. Journal of Clinical Investigation 104, 795804.
Block, GD, Wood, RJ & Allen, LH (1980) A comparison of the effects of feeding sulfur amino acids and protein on urine calcium in man. American Journal of Clinical Nutrition 33, 21282136.
Bourrin, S, Ammann, P, Bonjour, JP & Rizzoli, R (2000a) Dietary protein restriction lowers plasma insulin-like growth factor I (IGF-I), impairs cortical bone formation, and induces osteoblastic resistance to IGF-I in adult female rats. Endocrinology 141, 31493155.
Bourrin, S, Toromanoff, A, Ammann, P, Bonjour, JP & Rizzoli, R (2000b) Dietary protein deficiency induces osteoporosis in aged male rats. Journal of Bone and Mineral Research 15, 15551563.
Buclin, T, Cosma, M, Appenzeller, M, Jacquet, AF, Decosterd, LA, Biollaz, J & Burckhardt, P (2001) Diet acids and alkalis influence calcium retention in bone. Osteoporosis International 12, 493499.
Bushinsky, DA, Parker, WR, Alexander, KM & Krieger, NS (2001) Metabolic, but not respiratory, acidosis increases bone PGE (2) levels and calcium release. American Journal of Physiology 281, F1058F1066.
Cadogan, J, Blumsohn, A, Barker, ME & Eastell, R (1998) A longitudinal study of bone gain in pubertal girls: anthropometric and biochemical correlates. Journal of Bone and Mineral Research 13, 16021612.
Cappola, AR, Bandeen-Roche, K, Wand, GS, Volpato, S & Fried, LP (2001) Association of IGF-I levels with muscle strength and mobility in older women. Journal of Clinical Endocrinology and Metabolism 86, 41394146.
Caverzasio, J & Bonjour, JP (1989) Insulin-like growth factor I stimulates Na-dependent Pi transport in cultured kidney cells. American Journal of Physiology 257, F712F717.
Chu, JY, Margen, S & Costa, FM (1975) Studies in calcium metabolism. II. Effects of low calcium and variable protein intake on human calcium metabolism. American Journal of Clinical Nutrition 28, 10281035.
Civitelli, R (1993) Dietary L-lysine and calcium metabolism in humans: background. Nutrition 9, 299300.
Civitelli, R, Villareal, DT, Agnusdei, D, Nardi, P, Avioli, LV & Gennari, C (1992) Dietary L-lysine and calcium metabolism in humans. Nutrition 8, 400405.
Clemmons, DR & Underwood, LE (1991) Nutritional regulation of IGF-I and IGF binding proteins. Annual Review of Nutrition 11, 393412.
Dawson-Hughes, B & Harris, SS (2002) Calcium intake influences the association of protein intake with rates of bone loss in elderly men and women. American Journal of Clinical Nutrition 75, 773779.
Delmi, M, Rapin, CH, Bengoa, JM, Delmas, PD, Vasey, H & Bonjour, JP (1990) Dietary supplementation in elderly patients with fractured neck of the femur. Lancet 335, 10131016.
Department of Health (1998) Nutrition and Bone Health with Particular Reference to Calcium and Vitamin D. Report on Health and Social Subjects no. 49 London: The Stationery Office.
Draper, HH, Piche, LA & Gibson, RS (1991) Effects of a high protein intake from common foods on calcium metabolism in a cohort of postmenopausal women. Nutrition Research 11, 273281.
Feskanich, D, Willett, WC, Stampfer, MJ & Colditz, GA (1996) Protein consumption and bone fractures in women. American Journal of Epidemiology 143, 472479.
Food and Agriculture Organization/World Health Organization Expert Consultation (2002) Human Vitamin and Mineral Requirements, pp. 151179. Rome: FAO.
Frassetto, LA, Todd, KM, MorrisRC, RC, Jr & Sebastian, A (1998) Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. American Journal of Clinical Nutrition 68, 576583.
Frassetto, LA, Todd, KM, MorrisRC, RC, Jr & Sebastian, A (2000) Worldwide incidence of hip fracture in elderly women: relation to consumption of animal and vegetable foods. Journal of Gerontology 55A M585M592.
Geinoz, G, Rapin, CH, Rizzoli, R, Kraemer, R, Buchs, B, Slosman, D, Michel, JP & Bonjour, JP (1993) Relationship between bone mineral density and dietary intakes in the elderly. Osteoporosis International 3, 242248.
Hannan, MT, Tucker, KL, Dawson-Hughes, B, Cupples, LA, Felson, DT & Kiel, DP (2000) Effect of dietary protein on bone loss in elderly men and women: the Framingham Osteoporosis Study. Journal of Bone and Mineral Research 15, 25042512.
Heaney, RP (1993) Protein intake and the calcium economy. Journal of the American Dietetic Association 93, 12591260.
Hegsted, M & Linkswiler, HM (1981) Long-term effects of level of protein intake on calcium metabolism in young adult women. Journal of Nutrition 111, 244251.
Hegsted, M, Schuette, SA, Zemel, MB & Linkswiler, HM (1981) Urinary calcium and calcium balance in young men as affected by level of protein and phosphorus intake. Journal of Nutrition 111, 553562.
Holland, B, Welch, A, Unwin, I, Buss, D, Paul, A & Southgate, D (1991) McCance and Widdowson's The Composition of Food. Cambridge: Royal Society of Chemistry.
Hoppe, C, Molgaard, C & Michaelsen, KF (2000) Bone size and bone mass in 10-year-old Danish children: effect of current diet. Osteoporosis International 11, 10241030.
Juul, A, Bang, P, Hertel, NT, Main, K, Dalgaard, P, Jorgensen, K, Muller, J, Hall, K & Skakkebaek, NE (1994) Serum insulin-like growth factor-I in 1030 healthy children, adolescents, and adults: relation to age, sex, stage of puberty, testicular size, and body mass index. Journal of Clinical Endocrinology and Metabolism 78, 744752.
Kerstetter, JE & Allen, LH (1990) Dietary protein increases urinary calcium. Journal of Nutrition 120, 134136.
Kerstetter, JE, Caseria, DM, Mitnick, ME, Ellison, AF, Gay, LF, Liskov, TA, Carpenter, TO & Insogna, KL (1997) Increased circulating concentrations of parathyroid hormone in healthy, young women consuming a protein-restricted diet. American Journal of Clinical Nutrition 66, 11881196.
Kerstetter, JE, O'Brien, KO & Insogna, KL (2003) Low protein intake: the impact on calcium and bone homeostasis in humans. Journal of Nutrition 133, 855S861S.
Kerstetter, JE, Svastisalee, CM, Caseria, DM, Mitnick, ME & Insogna, KL (2000) A threshold for low-protein-diet-induced elevations in parathyroid hormone. American Journal of Clinical Nutrition 72, 168173.
Kim, Y & Linkswiler, HM (1979) Effect of level of protein intake on calcium metabolism and on parathyroid and renal function in the adult human male. Journal of Nutrition 109, 13991404.
Langdahl, BL, Kassem, M, Moller, MK & Eriksen, EF (1998) The effects of IGF-I and IGF-II on proliferation and differentiation of human osteoblasts and interactions with growth hormone. European Journal of Clinical Investigation 28, 176183.
Langlois, JA, Rosen, CJ, Visser, M, Hannan, MT, Harris, T, Wilson, PW & Kiel, DP (1998) Association between insulin-like growth factor I and bone mineral density in older women and men: the Framingham Heart Study. Journal of Clinical Endocrinology and Metabolism 83, 42574262.
Lemann, J Jr, Litzow, JR & Lennon, EJ (1966) The effects of chronic acid loads in normal man: further evidence for the participation of bone mineral in the defense against chronic metabolic acidosis. Journal of Clinical Investigation 45, 16081614.
Lutz, J (1984) Calcium balance and acid–base status of women as affected by increased protein intake and by sodium bicarbonate ingestion. American Journal of Clinical Nutrition 39, 281288.
McCarthy, TL, Centrella, M & Canalis, E (1989) Insulin-like growth factor (IGF) and bone. Connective Tissue Research 20, 277282.
Maiter, D, Fliesen, T, Underwood, LE, Maes, M, Gerard, G, Davenport, ML & Ketelslegers, JM (1989) Dietary protein restriction decreases insulin-like growth factor I independent of insulin and liver growth hormone binding. Endocrinology 124, 26042611.
Margen, S, Chu, JY, Kaufmann, NA & Calloway, DH (1974) Studies in calcium metabolism. I. The calciuretic effect of dietary protein. American Journal of Clinical Nutrition 27, 584589.
Marsh, AG, Sanchez, TV, Chaffee, FL, Mayor, GH & Mickelsen, O (1983) Bone mineral mass in adult lacto-ovo-vegetarian and omnivorous males. American Journal of Clinical Nutrition 37, 453456.
Marsh, AG, Sanchez, TV, Michelsen, O, Chaffee, FL & Fagal, SM (1988) Vegetarian lifestyle and bone mineral density. American Journal of Clinical Nutrition 48, 837841.
Marsh, AG, Sanchez, TV, Midkelsen, O, Keiser, J & Mayor, G (1980) Cortical bone density of adult lacto-ovo-vegetarian and omnivorous women. Journal of the American Dietetic Association 76, 148151.
Meyer, HE, Pedersen, JI, Loken, EB & Tverdal, A (1997) Dietary factors and the incidence of hip fracture in middle-aged Norwegians. A prospective study. American Journal of Epidemiology 145, 117123.
Mohan, S, Strong, DD, Lempert, UG, Tremollieres, F, Wergedal, JE & Baylink, DJ (1992) Studies on regulation of insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-4 production in human bone cells. Acta Endocrinologica 127, 555564.
Muhlbauer, RC & Li, F (1999) Effect of vegetables on bone metabolism. Nature 401, 343344.
Munger, RG, Cerhan, JR & Chiu, BC (1999) Prospective study of dietary protein intake and risk of hip fracture in postmenopausal women. American Journal of Clinical Nutrition 69, 147152.
New, SA, Bolton-Smith, C, Grubb, DA & Reid, DM (1997) Nutritional influences on bone mineral density: a cross-sectional study in premenopausal women. American Journal of Clinical Nutrition 65, 18311839.
New, SA, Robins, SP, Campbell, MK, Martin, JC, Garton, MJ, Bolton-Smith, C, Grubb, DA, Lee, SJ & Reid, DM (2000) Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health?. American Journal of Clinical Nutrition 71, 142151.
Oh, MS (2000) New perspectives on acid-base balance. Seminars in Dialysis 13, 212219.
Pannemans, DL, Schaafsma, G & Westerterp, KR (1997) Calcium excretion, apparent calcium absorption and calcium balance in young and elderly subjects: influence of protein intake. British Journal of Nutrition 77, 721729.
Paul, AA, Southgate, DAT & Russell, J (1980) First Supplement to McCance and Widdowson's The Composition of Foods. London: H.M. Stationery Office.
Prentice, A, Parsons, TJ & Cole, TJ (1994) Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. American Journal of Clinical Nutrition 60, 837842.
Prentice, A, Stear, SJ, Ginty, F, Jones, SC, Mills, L & Cole, TJ (2002) Calcium supplementation increases height and bone mass of 16–18 year old boys. Journal of Bone and Mineral Research 17, S397.
Promislow, JH, Goodman-Gruen, D, Slymen, DJ & Barrett-Connor, E (2002) Protein consumption and bone mineral density in the elderly: the Rancho Bernardo Study. American Journal of Epidemiology 155, 636644.
Rapuri, PB, Gallagher, JC & Haynatzka, V (2003) Protein intake: effects on bone mineral density and the rate of bone loss in elderly women. American Journal of Clinical Nutrition 77, 15171525.
Remer, T (2000) Influence of diet on acid–base balance. Seminars in Dialysis 13, 221226.
Remer, T & Manz, F (1995) Potential renal acid load of foods and its influence on urine pH. Journal of the American Dietetic Association 95, 791797.
Rizzoli, R (1998) Protein intake and osteoporosis. In Nutritional Aspects of Osteoporosis, pp. 141154 [Burckhardt, P, Dawson-Hughes, B and Heaney, RP, editors]. New York: Springer-Verlag.
Roughead, ZK, Johnson, LK, Lykken, GI & Hunt, JR (2003) Controlled high meat diets do not affect calcium retention or indices of bone status in healthy postmenopausal women. Journal of Nutrition 133, 10201026.
Rubin, J, Ackert-Bicknell, CL, Zhu, L, Fan, X, Murphy, TC, Nanes, MS, Marcus, R, Holloway, L, Beamer, WG & Rosen, CJ (2002) IGF-I regulates osteoprotegerin (OPG) and receptor activator of nuclear factor-kappaB ligand in vitro and OPG in vivo. Journal of Clinical Endocrinology and Metabolism 87, 42734279.
Schurch, MA, Rizzoli, R, Slosman, D, Vadas, L, Vergnaud, P & Bonjour, JP (1998) Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fracture. A randomized, double-blind, placebo-controlled trial. Annals of Internal Medicine 128, 801809.
Seeman, E, Karlsson, MK & Duan, Y (2000) On exposure to anorexia nervosa, the temporal variation in axial and appendicular skeletal development predisposes to site-specific deficits in bone size and density: a cross-sectional study. Journal of Bone and Mineral Research 15, 22592265.
Sellmeyer, DE, Stone, KL, Sebastian, A & Cummings, SR (2001) A high ratio of dietary animal to vegetable protein increases the rate of bone loss and the risk of fracture in postmenopausal women. Study of Osteoporotic Fractures Research Group. American Journal of Clinical Nutrition 73, 118122.
Spencer, H, Kramer, L, Osis, D & Norris, C (1978) Effect of a high protein (meat) intake on calcium metabolism in man. American Journal of Clinical Nutrition 31, 21672180.
Stear, SJ, Prentice, A, Jones, SC & Cole, TJ (2003) Effect of a calcium and exercise intervention on bone mineral status of 16–18 year old adolescent girls. American Journal of Clinical Nutrition 77, 985992.
Sugimoto, T, Nishiyama, K, Kuribayashi, F & Chihara, K (1997) Serum levels of insulin-like growth factor (IGF) I, IGF-binding protein (IGFBP)-2, and IGFBP-3 in osteoporotic patients with and without spinal fractures. Journal of Bone and Mineral Research 12, 12721279.
Teegarden, D, Lyle, RM, McCabe, GP, McCabe, LD, Proulx, WR, Michon, K, Knight, AP, Johnston, CC & Weaver, CM (1998) Dietary calcium, protein, and phosphorus are related to bone mineral density and content in young women. American Journal of Clinical Nutrition 68, 749754.
Thissen, JP, Davenport, ML, Pucilowska, JB, Miles, MV & Underwood, LE (1992) Increased serum clearance and degradation of 125I-labeled IGF-I in protein-restricted rats. American Journal of Physiology 262, E406E411.
Thissen, JP, Ketelslegers, JM & Underwood, LE (1994) Nutritional regulation of the insulin-like growth factors. Endocrine Reviews 15, 80101.
Thissen, JP, Underwood, LE, Maiter, D, Maes, M, Clemmons, DR & Ketelslegers, JM (1991) Failure of insulin-like growth factor-I (IGF-I) infusion to promote growth in protein-restricted rats despite normalization of serum IGF-I concentrations. Endocrinology 128, 885890.
Tkatch, L, Rapin, CH, Rizzoli, R, Slosman, D, Nydegger, V, Vasey, H & Bonjour, JP (1992) Benefits of oral protein supplementation in elderly patients with fracture of the proximal femur. Journal of the American College of Nutrition 11, 519525.
Tucker, KL, Hannan, MT, Chen, H, Cupples, LA, Wilson, PW & Kiel, DP (1999) Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. American Journal of Clinical Nutrition 69, 727736.
Tylavsky, FA & Anderson, JJ (1988) Dietary factors in bone health of elderly lactoovovegetarian and omnivorous women. American Journal of Clinical Nutrition 48, 842849.
Wang, J, Zhou, J & Bondy, CA (1999) IGF-1 promotes longitudinal bone growth by insulin-like actions augmenting chondrocyte hypertrophy. FASEB Journal 13, 19851990.
Wolinsky, I & Fosmire, GJ (1982) Calcium metabolism in aged mice ingesting a lysine-deficient diet. Gerontology 28, 156162.
Yakar, S, Rosen, CJ, Beamer, WG, Ackert-Bicknell, CL, Wu, Y, Liu, JL, Ooi, GT, Setser, J, Frystyk, J, Boisclair, YR & LeRoith, D (2002) Circulating levels of IGF-1 directly regulate bone growth and density. Journal of Clinical Investigation 110, 771781.
Yan, L, Zhou, B, Prentice, A, Wang, X & Golden, MH (1999) Epidemiological study of hip fracture in Shenyang, People's Republic of China. Bone 24, 151155.
Zhang, M, Xuan, S, Bouxsein, MLvon Stechow, D, Akeno, N, Faugere, MC, Malluche, H, Zhao, G, Rosen, CJ, Efstratiadis, A & Clemens, TL (2002) Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. Journal of Biological Chemistry 277, 4400544012.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 93 *
Loading metrics...

Abstract views

Total abstract views: 252 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th August 2018. This data will be updated every 24 hours.