Skip to main content
×
×
Home

Ultra-processed food consumption and excess weight among US adults

  • Filippa Juul (a1), Euridice Martinez-Steele (a2) (a3), Niyati Parekh (a1) (a4), Carlos A. Monteiro (a2) (a3) and Virginia W. Chang (a1) (a4)...
Abstract

Ultra-processed foods provide 58 % of energy intake and 89 % of added sugars in the American diet. Nevertheless, the association between ultra-processed foods and excess weight has not been investigated in a US sample. The present investigation therefore aims to examine the association between ultra-processed foods and excess weight in a nationally representative sample of US adults. We performed a cross-sectional analysis of anthropometric and dietary data from 15 977 adults (20–64 years) participating in the National Health and Nutrition Examination Survey 2005–2014. Dietary data were collected by 24-h recall. Height, weight and waist circumference (WC) were measured. Foods were classified as ultra-processed/non-ultra-processed according to the NOVA classification. Multivariable linear and logistic regression was used to evaluate the association between ultra-processed food consumption (% energy) and BMI, WC and odds of BMI≥25 kg/m2, BMI≥30 kg/m2 and abdominal obesity (men: WC≥102 cm, women: WC≥88 cm). Prevalence of BMI≥25 kg/m2, BMI≥30 kg/m2 and abdominal obesity was 69·2, 36·1 and 53·0 %, respectively. Consuming ≥74·2 v. ≤36·5 % of total energy from ultra-processed foods was associated with 1·61 units higher BMI (95 % CI 1·11, 2·10), 4·07 cm greater WC (95 % CI 2·94, 5·19) and 48, 53 and 62 % higher odds of BMI≥25 kg/m2, BMI≥30 kg/m2 and abdominal obesity, respectively (OR 1·48; 95 % CI 1·25, 1·76; OR 1·53; 95 % CI 1·29, 1·81; OR 1·62; 95 % CI 1·39, 1·89, respectively; P for trend<0·001 for all). A significant interaction between being female and ultra-processed food consumption was found for BMI (F 4,79=4·89, P=0·002), WC (F 4,79=3·71, P=0·008) and BMI≥25 kg/m2 (F 4,79=5·35, P<0·001). As the first study in a US population, our findings support that higher consumption of ultra-processed food is associated with excess weight, and that the association is more pronounced among women.

Copyright
Corresponding author
* Corresponding author: V. W. Chang, fax +1 212 995 4877, email vc43@nyu.edu
References
Hide All
1. Moubarac, JC, Parra, DC, Cannon, G, et al. (2014) Food classification systems based on food processing: significance and implications for policies and actions: a systematic literature review and assessment. Curr Obes Rep 3, 256272.
2. Monteiro, CA, Moubarac, JC, Cannon, G, et al. (2013) Ultra-processed products are becoming dominant in the global food system. Obes Rev 14, Suppl. 2, 2128.
3. Moubarac, JC, Martins, AP, Claro, RM, et al. (2013) Consumption of ultra-processed foods and likely impact on human health. Evidence from Canada. Public Health Nutr 16, 22402248.
4. Poti, JM, Mendez, MA, Ng, SW, et al. (2015) Is the degree of food processing and convenience linked with the nutritional quality of foods purchased by US households? Am J Clin Nutr 101, 12511262.
5. Martinez Steele, E, Baraldi, LG, Louzada, ML, et al. (2016) Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study. BMJ Open 6, e009892.
6. Eicher-Miller, HA, Fulgoni, VL 3rd & Keast, DR (2012) Contributions of processed foods to dietary intake in the US from 2003–2008: a report of the Food and Nutrition Science Solutions Joint Task Force of the Academy of Nutrition and Dietetics, American Society for Nutrition, Institute of Food Technologists, and International Food Information Council. J Nutr 142, 2065S2072S.
7. Eicher-Miller, HA, Fulgoni, VL & Keast, DR (2015) Processed food contributions to energy and nutrient intake differ among US children by race/ethnicity. Nutrients 7, 1007610088.
8. Martinez Steele, E, Popkin, BM, Swinburn, B, et al. (2017) The share of ultra-processed foods and the overall nutritional quality of diets in the US: evidence from a nationally representative cross-sectional study. Popul Health Metr 15, 6.
9. Moubarac, JC, Batal, M, Louzada, ML, et al. (2017) Consumption of ultra-processed foods predicts diet quality in Canada. Appetite 108, 512520.
10. Adams, J & White, M (2015) Characterisation of UK diets according to degree of food processing and associations with socio-demographics and obesity: cross-sectional analysis of UK National Diet and Nutrition Survey (2008–12). Int J Behav Nutr Phys Act 12, 160.
11. Louzada, ML, Martins, AP, Canella, DS, et al. (2015) Impact of ultra-processed foods on micronutrient content in the Brazilian diet. Rev Saude Publica 49, 45.
12. Julia, C, Martinez, L, Allès, B, et al. (2018) Contribution of ultra-processed foods in the diet of adults from the French NutriNet-Santé study. Public Health Nutr 21, 2737.
13. Batal, M, Johnson-Down, L, Moubarac, JC, et al. (2018) Quantifying associations of the dietary share of ultra-processed foods with overall diet quality in First Nations peoples in the Canadian provinces of British Columbia, Alberta, Manitoba and Ontario. Public Health Nutr 21, 103113.
14. Cediel, G, Reyes, M, da Costa Louzada, ML, et al. (2018) Ultra-processed foods and added sugars in the Chilean diet (2010). Public Health Nutr 21, 125133.
15. Lustig, RH (2017) Processed food-an experiment that failed. JAMA Pediatr 171, 212214.
16. Louzada, ML, Baraldi, LG, Steele, EM, et al. (2015) Consumption of ultra-processed foods and obesity in Brazilian adolescents and adults. Prev Med 81, 915.
17. Mendonca, RD, Pimenta, AM, Gea, A, et al. (2016) Ultraprocessed food consumption and risk of overweight and obesity: the University of Navarra Follow-Up (SUN) cohort study. Am J Clin Nutr 104, 14331440.
18. Canella, DS, Levy, RB, Martins, AP, et al. (2014) Ultra-processed food products and obesity in Brazilian households (2008-2009). PLOS ONE 9, e92752.
19. Pereira, MA, Kartashov, AI, Ebbeling, CB, et al. (2005) Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analysis. Lancet 365, 3642.
20. Mozaffarian, D, Hao, T, Rimm, EB, et al. (2011) Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med 364, 23922404.
21. Zipf, G, Chiappa, M & Porter, K. (2013) National Health and Nutrition Examination Survey: plan of operations, 1999–2010. Vital Health Stat 56, 1.
22. Centers for Disease Control and Prevention (2011) National Health and Nutrition Examination Survey (NHANES) Anthropometry Procedures Manual. Hyattsville, MD: CDC, National Center for Health Statistics (NCHS).
23. Centers for Disease Control and Prevention (2009) National Health and Nutrition Examination Survey (NHANES) Anthropometry Procedures Manual. Hyattsville, MD: CDC, National Center for Health Statistics (NCHS).
24. Centers for Disease Control and Prevention (2007) National Health and Nutrition Examination Survey (NHANES) Anthropometry Procedures Manual. Hyattsville, MD: CDC. National Center for Health Statistics (NCHS).
25. Centers for Disease Control and Prevention (2005) National Health and Nutrition Examination Survey Anthropometry and Physical Activity Monitor Procedures Manual. Hyattsville, MD: CDC, National Center for Health Statistics (NCHS).
26. Moshfegh, AJ, Rhodes, DG, Baer, DJ, et al. (2008) The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am J Clin Nutr 88, 324332.
27. Blanton, CA, Moshfegh, AJ, Baer, DJ, et al. (2006) The USDA Automated Multiple-Pass Method accurately estimates group total energy and nutrient intake. J Nutr 136, 25942599.
28. Raper, N, Perloff, B, Ingwersen, L, et al. (2004) An overview of USDA’s Dietary Intake Data System. J Food Comp Anal 17, 545555.
29. Centers for Disease Control and Prevention (2013) National Health and Nutrition Examination Survey: Analytic Guidelines, 2011-2012. Hyattsville, MD: Division of Health and Nutrition Examination Surveys, National Center for Health Statistics, CDC.
30. Monteiro, CA (2009) Nutrition and health. The issue is not food, nor nutrients, so much as processing. Public Health Nutr 12, 729731.
31. Ludwig, DS (2011) Technology, diet, and the burden of chronic disease. JAMA 305, 13521353.
32. World Health Organization (2016) BMI classification. http://apps.who.int/bmi/index.jsp?introPage=intro_3.html (accessed April 2016).
33. National Institutes of Health/National Heart, Lung, and Blood Institute (1998) Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults – the evidence report. Obes Res 6, Suppl. 2, 51S209S.
34. United States Department of Health and Human Services (2008) Physical Activity Guidelines for Americans. Washington, DC: USDHHS.
35. Barros, AJ & Hirakata, VN (2003) Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Med Res Methodol 3, 21.
36. Rothwell, CJ, Madans, JH & Porter, K (2013) National Health and Nutrition Examination Survey: analytic guidelines, 1999–2010. Vital Health Stat 2, 161.
37. Mirrahimi, A, Chiavaroli, L, Srichaikul, K, et al. (2014) The role of glycemic index and glycemic load in cardiovascular disease and its risk factors: a review of the recent literature. Curr Atheroscler Rep 16, 381.
38. Fan, J, Song, Y, Wang, Y, et al. (2012) Dietary glycemic index, glycemic load, and risk of coronary heart disease, stroke, and stroke mortality: a systematic review with meta-analysis. PLOS ONE 7, e52182.
39. Youn, S, Woo, HD, Cho, YA, et al. (2012) Association between dietary carbohydrate, glycemic index, glycemic load, and the prevalence of obesity in Korean men and women. Nutr Res 32, 153159.
40. Fardet, A (2016) Minimally processed foods are more satiating and less hyperglycemic than ultra-processed foods: a preliminary study with 98 ready-to-eat foods. Food Funct 7, 23382346.
41. Rolls, BJ (2009) The relationship between dietary energy density and energy intake. Physiol Behav 97, 609615.
42. Wahlqvist, ML (2016) Food structure is critical for optimal health. Food Funct 7, 12451250.
43. Boulange, CL, Neves, AL, Chilloux, J, et al. (2016) Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med 8, 42.
44. Food and Agriculture Organization (2015) Guidelines on the Collection of Information on Food Processing Through Food Consumption Surveys. Rome: FAO.
45. Pan American Health Organization (2015) Ultra-Processed Food and Drink Products in Latin America: Trends, Impact on Obesity, Policy Implications. Washington, DC: PAHO.
46. Lafay, L, Mennen, L, Basdevant, A, et al. (2000) Does energy intake underreporting involve all kinds of food or only specific food items? Results from the Fleurbaix Laventie Ville Sante (FLVS) study. Int J Obes Relat Metab Disord 24, 15001506.
47. Fardet, A, Rock, E, Bassama, J, et al. (2015) Current food classifications in epidemiological studies do not enable solid nutritional recommendations for preventing diet-related chronic diseases: the impact of food processing. Adv Nutr 6, 629638.
48. Ng, M, Fleming, T, Robinson, M, et al. (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766781.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Juul et al. supplementary material
Table S1

 Word (29 KB)
29 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed