Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-04-30T11:25:38.700Z Has data issue: false hasContentIssue false

Untangling the relationship between BMI and academic achievement in the elementary years

Published online by Cambridge University Press:  10 August 2023

Baeksan Yu*
Affiliation:
Gwangju National University of Education, Department of Education, Gwangju, South Korea
Sean Kelly
Affiliation:
Department of Educational Foundations, Organizations, and Policy, University of Pittsburgh, PA, USA
*
*Corresponding author: Baeksan Yu, email yu.baeksan@gmail.com

Abstract

Although the negative relationship between BMI and academic achievement (AA) is well documented, no prior studies have investigated the potential bi-directional relationship between BMI and AA in childhood. We investigated the longitudinal relationships between child BMI and AA across different school subjects (reading, math and science) and sexes. To do so, we employed the Early Childhood Longitudinal Study kindergarten cohort (2011), which is a nationally representative sample of American children who entered kindergarten in 2010–2011. We utilised the kindergarten–fifth grade longitudinal sample (n 17 480) and applied cross-lagged panel models with fixed effects to address unobserved heterogeneity. Our results showed significant but small reciprocal relationships between BMI and math/science achievement for girls (n 8540) (year-to-year effect sizes ranged from –0·01 to –0·04), but not for reading. In contrast, we did not find any evidence of reciprocal relationships between BMI and AA for boys (n 8940). Our results reveal that early weight status and academic performance may be jointly responsible for a vicious cycle of poor AA and unhealthy weight. Breaking the cycle from AA may complement existing obesity prevention strategies, particularly for girls in the science, technology, engineering and mathematics field.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

He, J, Chen, X, Fan, X, et al. (2019) Is there a relationship between body mass index and academic achievement? A meta-analysis. Public Health 167, 111124.Google Scholar
Hughes, A, Wade, KH, Dickson, M, et al. (2021) Common health conditions in childhood and adolescence, school absence, and educational attainment: Mendelian randomization study. NPJ Sci Learn 6, 19.CrossRefGoogle ScholarPubMed
Watson, A, D’Souza, NJ, Timperio, A, et al. (2022) Longitudinal associations between weight status and academic achievement in primary school children. Pediatr Obes 18, e12975.Google Scholar
Tanas, R, Gil, B, Marsella, M, et al. (2022) Addressing weight stigma and weight-based discrimination in children: preparing pediatricians to meet the challenge. J Pediatr 248, 135136. e3.Google Scholar
Yu, B, Zachrisson, HD, Cheesman, R, et al. (2023) Boys with overweight status lagged behind girls with overweight status in reading: evidence from Mendelian randomization. J Clin Epidemiol 159, 199205.Google Scholar
Fan, M, Jin, Y & Zhang, M (2023) Genetic risk, childhood obesity, and educational achievements. Econ Educ Rev 94, 102408.Google Scholar
Dennis, E, Manza, P & Volkow, ND (2022) Socioeconomic status, BMI, and brain development in children. Transl Psychiatr 12, 110.Google Scholar
Alatupa, S, Pulkki-Råback, L, Hintsanen, M, et al. (2010) School performance as a predictor of adulthood obesity: a 21-year follow-up study. Eur J Epidemiol 25, 267274.Google Scholar
Kaplan, DS, Liu, RX & Kaplan, HB (2005) School related stress in early adolescence and academic performance three years later: the conditional influence of self expectations. Soc Psychol Educ 8, 317.Google Scholar
Huang, C (2015) Academic achievement and subsequent depression: a meta-analysis of longitudinal studies. J Child Fam Stud 24, 434442.CrossRefGoogle Scholar
Kaya, M & Erdem, C (2021) Students’ well-being and academic achievement: a meta-analysis study. Child Indic Res 14, 17431767.CrossRefGoogle Scholar
Avila, C, Holloway, AC, Hahn, MK, et al. (2015) An overview of links between obesity and mental health. Curr Obes Rep 4, 303310.Google Scholar
Mühlig, Y, Antel, J, Föcker, M, et al. (2016) Are bidirectional associations of obesity and depression already apparent in childhood and adolescence as based on high-quality studies? A systematic review. Obes Rev 17, 235249.Google Scholar
Kelly, Y, Patalay, P, Montgomery, S, et al. (2016) BMI development and early adolescent psychosocial well-being: UK Millennium Cohort Study. Pediatrics 138, e20160967.Google Scholar
Crosnoe, R, Johnson, MK & Elder, GH Jr (2004) Intergenerational bonding in school: the behavioral and contextual correlates of student-teacher relationships. Sociol Educ 77, 6081.Google Scholar
Crosnoe, R (2011) Fitting In, Standing Out: Navigating the Social Challenges of High School to get an Education. New York, NY: Cambridge University Press.Google Scholar
Soczynska, JK, Kennedy, SH, Woldeyohannes, HO, et al. (2011) Mood disorders and obesity: understanding inflammation as a pathophysiological nexus. Neuromolecular Med 13, 93116.Google Scholar
Bhansali, R & Trivedi, K (2008) Is academic anxiety gender specific: a comparative study. J Soc Sci 17, 13.Google Scholar
Master, A (2021) Gender stereotypes influence children’s STEM motivation. Child Dev Perspect 15, 203210.Google Scholar
Kelly, S & Zhang, Y (2016) Teacher support and engagement in math and science: evidence from the high school longitudinal study. High Sch J 99, 141–65.Google Scholar
Finkel, SE (1995) Causal Analysis with Panel Data. Thousand Oaks, CA: Sage.Google Scholar
Lilly, CL (2020) The chicken or the egg: one statistical approach for determining the direction of influence. J Pediatr 227, 328330.Google Scholar
Reardon, SF, Fahle, EM, Kalogrides, D, et al. (2019) Gender achievement gaps in US school districts. Am Educ Res J 56, 24742508.Google Scholar
Sweeting, H & West, P (2003) Sex differences in health at ages 11, 13 and 15. Soc Sci Med 56, 3139.Google Scholar
Tourangeau, K, Nord, C, , T, Wallner-Allen, K, Vaden-Kiernan, N, Blaker, L, et al. (2018) Early Childhood Longitudinal Study, Kindergarten Class of 2010–11 (ECLS-K: 2011): User’s Manual for the ECLS-K: 2011 Kindergarten-Fourth Grade Data File, Electronic Codebook, Public Version. NCES 2018–032. National Center for Education Statistics. https://nces.ed.gov/pubs2018/2018032.pdf (accessed December 2022).Google Scholar
Yu, B & Kelly, S (2022) Does artistic activity help kids avoid obesity? Emergent considerations in the ecology of childhood BMI. Prev Med 161, 107120.Google Scholar
Hsu, AS, Chen, C & Greenberger, E (2019) Parental warmth moderates the association between BMI trajectories and academic achievement. J Early Adolesc 39, 371394.Google Scholar
Little, M (2017) Racial and socioeconomic gaps in executive function skills in early elementary school: nationally representative evidence from the ECLS-K: 2011. Educational Researcher 46, 103109.CrossRefGoogle Scholar
Bailey, DH, Oh, Y, Farkas, G, et al. (2020) Reciprocal effects of reading and mathematics? Beyond the cross-lagged panel model. Dev Psychol 56, 912.Google Scholar
Allison, PD, Williams, R & Moral-Benito, E (2017) Maximum likelihood for cross-lagged panel models with fixed effects. Socius 3, 2378023117710578.Google Scholar
Carbonaro, W & Maloney, E (2019) Extracurricular activities and student outcomes in elementary and middle school: causal effects or self-selection? Socius 5, 2378023119845496.CrossRefGoogle Scholar
Li, Y, Zhai, F, Yang, X, et al. (2007) Determinants of childhood overweight and obesity in China. Br J Nutr 97, 210215.Google Scholar
Serra-Majem, L, Bartrina, JA, Pérez-Rodrigo, C, et al. (2006) Prevalence and determinants of obesity in Spanish children and young people. Br J Nutr 96, S67S72.Google Scholar
Hamaker, EL, Kuiper, RM & Grasman, RP (2015) A critique of the cross-lagged panel model. Psychol Methods 20, 102.CrossRefGoogle ScholarPubMed
Bollen, KA & Brand, JE (2010) A general panel model with random and fixed effects: a structural equations approach. Soc Forces 89, 134.Google Scholar
Gische, C, West, SG & Voelkle, MC (2021) Forecasting causal effects of interventions v. predicting future outcomes. Struct Equation Model: Multidisciplinary J 28, 475492.Google Scholar
Lüdtke, O & Robitzsch, A (2021) A critique of the random intercept cross-lagged panel model. PsyArXiv. doi: 10.31234/osf.io/6f85c.Google Scholar
Schudde, L (2018) Heterogeneous effects in education: the promise and challenge of incorporating intersectionality into quantitative methodological approaches. Rev Res Education 42, 7292.Google Scholar
Wei, T, Liu, X & Barnard-Brak, L (2015) Gender differences in mathematics and reading trajectories among children from kindergarten to eighth grade. Res Educ 93, 7789.Google Scholar
Orth, U, Meier, LL, Bühler, JL, et al. (2022) Effect size guidelines for cross-lagged effects. Psychol Methods (Epublication ahead of print version 23 June 2022).Google Scholar
Brault, M-C, Turcotte, O, Aimé, A, et al. (2015) Body mass index accuracy in preadolescents: can we trust self-report or should we seek parent report? J Pediatr 167, 366371.Google Scholar
Fang, J, Wen, Z, Ouyang, J, et al. (2022) The reciprocal longitudinal relationship between body mass index and subjective well-being in China. Soc Sci Med 297, 114829.Google Scholar
Tomaso, CC, James, T, Nelson, JM, et al. (2022) Longitudinal associations between executive control and body mass index across childhood. Pediatr Obes 17, e12866.Google Scholar
Kase, BE, Rommelse, N, Chen, Q, et al. (2021) Longitudinal associations between symptoms of ADHD and BMI from late childhood to early adulthood. Pediatrics 147, e2020036657.Google Scholar
Puhl, RM & Lessard, LM (2020) Weight stigma in youth: prevalence, consequences, and considerations for clinical practice. Curr Obes Rep 9, 402411.Google Scholar
Latzer, Y & Stein, D (2013) A review of the psychological and familial perspectives of childhood obesity. J Eat Disord 1, 113.Google Scholar
Wiklund, M, Malmgren-Olsson, E-B, Öhman, A, et al. (2012) Subjective health complaints in older adolescents are related to perceived stress, anxiety and gender–a cross-sectional school study in Northern Sweden. BMC Public Health 12, 113.Google Scholar
Pearl, J (2009) Causality. Cambridge university press.Google Scholar
Black, N, Johnston, DW & Peeters, A (2015) Childhood obesity and cognitive achievement. Health Econ 24, 10821100.Google Scholar
Pascoe, MC, Hetrick, SE & Parker, AG (2020) The impact of stress on students in secondary school and higher education. Int J Adolesc Youth 25, 104112.Google Scholar
Struthers, CW, Perry, RP & Menec, VH (2000) An examination of the relationship among academic stress, coping, motivation, and performance in college. Res Higher Educ 41, 581592.Google Scholar
Weidner, G, Kohlmann, C-W, Dotzauer, E, et al. (1996) The effects of academic stress on health behaviors in young adults. Anxiety Stress Coping 9, 123133.Google Scholar
von HIPPEL, PT & Frisvold, DE (2023) Have states reduced obesity by legislating more physical activity in elementary school? Milbank Quarterly 101, 204248.Google Scholar
Supplementary material: File

Yu and Kelly supplementary material

Appendices S1-S8

Download Yu and Kelly supplementary material(File)
File 67.7 KB