Hostname: page-component-f7d5f74f5-qtg9w Total loading time: 0 Render date: 2023-10-02T13:08:14.022Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

The utilization of proteins and amino acids in diets based on cassava (Manihot utilissima), rice or sorghum (Sorghum sativa) by young Nigerian men of low income

Published online by Cambridge University Press:  24 July 2007

B. M. Nicol
Nutrition Unit, Federal Ministry of Health, Kaduna, Nigeria
P. G. Phillips
Nutrition Unit, Federal Ministry of Health, Kaduna, Nigeria
Rights & Permissions [Opens in a new window]


Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The net protein utilization (npu, the percentage of dietary nitrogen retained in the body, allowance being made for endogenous urinary and faecal N) of diets composed of Nigerian foodstuffs, based on rice, sorghum (Sorghum sativa) or cassava (Manihot utilissima), was compared to that of a minimal protein diet used to determine endogenous N excretion, supplemented with whole egg. The addition of dl-methionine and l-tryptophan to the rice diet produced a small but non-significant increase in npu, whereas the addition of dl-methionine to the cassava diet produced a very significant increase in npu. The npu of a diet based on home-pounded, winnowed, sorghum flour was higher than that of a diet based on milled whole-meal sorghum due to the low digestibility of the latter diet.

2. The digestibility of the rice and cassava diets were the same, although the total crude fibre content of the rice diets was lower than that of the cassava diets.

3. Nigerian men used the proteins of the egg diet and of mixed diets based on rice, sorghum and cassava more efficiently than predicted by applying methods recommended by the FAO/WHO ad hoc Expert Committee on Energy and Protein Requirements (FAO/WHO, 1973).

4. The recommendations of that Committee (FAO/WHO, 1973) to reduce the amounts of sulphur amino acids and tryptophan, contained in the ‘provisional pattern of amino acids’ proposed by the FAO Committee on Protein Requirements (FAO, 1957), are supported, but the increases in lysine and threonine are not supported, by the present results.

Papers of direct relevance to Clinical and Human Nutrition
Copyright © The Nutrition Society 1978



Allison, J. B. (1955). Physiol. Rev. 35, 664.CrossRefGoogle Scholar
Allison, J. B., Anderson, J. A. & Seeley, R. D. (1947). J. Nutr. 33, 361.CrossRefGoogle Scholar
Association of Official Analytical Chemists (1955). Official Methods of Analysis, 8th ed.Washington, DC: Association of Official Analytical Chemists.Google Scholar
Block, R. J. & Mitchell, H. H. (1946). Nutr. Abstr. Rev. 16, 249.Google Scholar
Camien, M. N., Malin, R. B. & Dunn, M. S. (1951). Archs Biochem. 30, 62.Google Scholar
Clark, H. E., Howe, J. M., Shannon, B. M., Carlson, K. & Kolski, K. (1970). Am. J. clin. Nutr. 23, 731.CrossRefGoogle Scholar
FAO (1957). Nutr. Stud. no. 16.Google Scholar
FAO (1973). Tech. Rep. Ser. Wld Hlth Org. no 522.Google Scholar
FAO (1975). Fd Nutr. (FAO, Rome), 1, no. 2.Google Scholar
Harper, A. E., Benton, D. A., Winje, M. E. & Elvehjem, C. A. (1954). Archs Biochem. Biophys. 51, 523.CrossRefGoogle Scholar
Irwin, M. I. & Hegsted, D. M. (1971). J. Nutr. 101, 539.CrossRefGoogle Scholar
Lunven, P., C. Le Clement De St, Marcq, Carnovale, E. & Fratoni, A. (1973). Br. J. Nutr. 30, 189.CrossRefGoogle Scholar
McCance, R. A. & Walsham, C. M. (1948). Br. J. Nutr. 2, 26.CrossRefGoogle Scholar
Nicol, B. M. (1953). Proc. Nutr. Soc. 12, 66.CrossRefGoogle Scholar
Nicol, B. M. (1959 a). Br. J. Nutr. 13, 293.CrossRefGoogle Scholar
Nicol, B. M. (1959 b). Br. J. Nutr. 13, 307.CrossRefGoogle Scholar
Nicol, B. M. & Phillips, P. G. (1961). Publs natn. Res. Coun., Wash. no. 843.Google Scholar
Nicol, B. M. & Phillips, P. G. (1976 a). Br. J. Nutr. 35, 181.CrossRefGoogle Scholar
Nicol, B. M. & Phillips, P. G. (1976 b). Br. J. Nutr. 36, 337.CrossRefGoogle Scholar
Orr, M. L. & Watt, B. K. (1957). Home Econ. Res. Rep. US Dept. Agric. no. 4.Google Scholar
Phillips, P. G. & Ladell, W. S. S. (1959). J. trop. Med. Hyg. 63, 3.Google Scholar
Rose, W. C., Coon, J. M., Lockhart, H. B. & Lambert, G. F. (1955). J. biol. Chem. 215, 101.Google Scholar
Southgate, D. A. T. & Durnin, J. V. G. A. (1970). Br. J. Nutr. 24, 517.CrossRefGoogle Scholar
Stephen, J. M. L. & Waterlow, J. C. (1968). Lancet i, 118.CrossRefGoogle Scholar
Subrahmanyan, V., Narayanarao, M., Ramarao, G. & Swaminathan, M. (1955). Br. J. Nutr. 9, 550.CrossRefGoogle Scholar
Waterlow, J. C. (1968). Lancet ii, 1091.CrossRefGoogle Scholar
Zezulka, A. Y. & Calloway, D. H. (1976). J. Nutr. 106, 212.CrossRefGoogle Scholar