Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T15:56:15.570Z Has data issue: false hasContentIssue false

When and what to eat? A scoping review of health outcomes of fasting in conjunction with a low-carbohydrate diet

Published online by Cambridge University Press:  29 June 2022

Nasim Salehi*
Affiliation:
Faculty of Health, Southern Cross University, Gold Coast Campus, QLD, Australia
Melanie Walters
Affiliation:
Sante Medical, Brisbane, Australia
*
* Corresponding author: Nasim Salehi, email nasim.salehi@scu.edu.au

Abstract

Over the last several decades, there has been an increase in chronic diseases such as neurodegenerative, inflammatory, cardiovascular disease (CVD) and cancer. Two eating patterns, a low-carbohydrate diet (LCD) and fasting, have been researched independently over this period and found to be beneficial in reducing many of these chronic diseases’ detrimental effects. However, there have been limited studies about the synergy of these eating patterns. This current scoping review aims to explore the evidence of the health outcomes of using a LCD in conjunction with fasting. Four databases were searched, and fifteen articles were found that fit the inclusion criteria. The articles reported positive effects of combining the two eating patterns for type 2 diabetes, CVD, inflammatory conditions and weight reduction and maintenance. LCD and fasting together provide synergy in decreasing metabolic syndrome (as the key causes of chronic illnesses), such as insulin levels, fasting glucose, blood pressure, TAG and regulating lipid profile. Due to the paucity of research, further high-quality studies are needed to substantiate this evidence.

Type
Scoping Review
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Elizabeth, L, Machado, P, Zinöcker, M, et al. (2020) Ultra-processed foods and health outcomes: a narrative review. Nutrients 12, 1955.CrossRefGoogle ScholarPubMed
Bolla, A, Caretto, A, Laurenzi, A, et al. (2019) Low-carb and ketogenic diets in type 1 and type 2 diabetes. Nutrients 11, 962976.CrossRefGoogle ScholarPubMed
Eissenberg, JC (2018) Hungering for immortality. Missouri Med 115, 1217.Google ScholarPubMed
Santos, F, Esteves, S, da Costa Pereira, A, et al. (2012) Systematic review and meta-analysis of clinical trials of the effects of low carbohydrate diets on cardiovascular risk factors. Obes Rev 13, 10481066.CrossRefGoogle ScholarPubMed
Cho, Y, Hong, N, Kim, KW, et al. (2019) The effectiveness of intermittent fasting to reduce body mass index and glucose metabolism: a systematic review and meta-analysis. J Clin Med 8, 16451656.CrossRefGoogle ScholarPubMed
Harris, L, McGarty, A, Hutchison, L, et al. (2018) Short-term intermittent energy restriction interventions for weight management: a systematic review and meta-analysis. Obesity Rev 19, 113.CrossRefGoogle ScholarPubMed
Liu, YS, Wu, QJ, Xia, Y, et al. (2019) Carbohydrate intake and risk of metabolic syndrome: a dose-response meta-analysis of observational studies. Nutr Metab Cardiovasc Dis 29, 12881298.CrossRefGoogle ScholarPubMed
Park, J, Seo, YG, Paek, YJ, et al. (2020) Effect of alternate-day fasting on obesity and cardiometabolic risk: a systematic review and meta-analysis. Metabolism 111, 19.CrossRefGoogle Scholar
Johnstone, A (2015) Fasting for weight loss: an effective strategy or latest dieting trend? Int J Obes 39, 727733.CrossRefGoogle ScholarPubMed
Welton, S, Minty, R, O'Driscoll, T, et al. (2020) Intermittent fasting and weight loss: systematic review. Can Fam Phys 66, 117125.Google ScholarPubMed
Meng, H, Zhu, L, Kord-Varkaneh, H, et al. (2020) Effects of intermittent fasting and energy-restricted diets on lipid profile: a systematic review and meta-analysis. Nutrition 77, 111.CrossRefGoogle ScholarPubMed
Mosley, M (2015) The 8-Week Blood Sugar Diet: Lose Weight Fast and Reprogram Your Body for Life. Cammeray: Simon and Schuster. Google Scholar
Mattson, MP, Moehl, K, Ghena, N, et al. (2018) Intermittent metabolic switching, neuroplasticity and brain health. Nat Rev Neurosci 19, 6380.CrossRefGoogle ScholarPubMed
Freire, R (2020) Scientific evidence of diets for weight loss: different macronutrient composition, intermittent fasting, and popular diets. Nutrition 69, 111.CrossRefGoogle ScholarPubMed
Longo, VD & Panda, S (2016) Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab 23, 10481059.CrossRefGoogle ScholarPubMed
Obrist, F, Michels, J, Durand, S, et al. (2018) Metabolic vulnerability of cisplatin-resistant cancers. EMBO J 37, 98597.CrossRefGoogle ScholarPubMed
Vasconcelos, AR, Yshii, LM, Viel, TA, et al. (2014) Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment. J Neuroinflammation 11, 85.CrossRefGoogle ScholarPubMed
Katz, DL & Meller, S (2014) Can we say what diet is best for health? Ann Rev Public Health 35, 83103.CrossRefGoogle ScholarPubMed
Fechner, E, Smeets, E, Schrauwen, P, et al. (2020) The effects of different degrees of carbohydrate restriction and carbohydrate replacement on cardiometabolic risk markers in humans-a systematic review and meta-analysis. Nutrients 12, 991.CrossRefGoogle ScholarPubMed
Fan, Y, Di, H, Chen, G, et al. (2016) Effects low carbohydrate diets individuals type 2 diabetes: systematic review and meta-analysis. Int J Clin Exp Med 9, 1116611174.Google Scholar
Gee, D & Whaley, J (2016) Learning together: practice-centred professional development to enhance mathematics instruction. Math Teach Educ Dev 18, 8799.Google Scholar
Arbour, MW, Stec, M, Walker, KC, et al. (2021) Clinical implications for women of a low-carbohydrate or ketogenic diet with intermittent fasting. Nurs Women’s Health 25, 139151.CrossRefGoogle ScholarPubMed
Svihus, B & Hervik, KA (2016) Digestion and metabolic fates of starch, and its relation to major nutrition-related health problems: a review. Starch – Stärke 68, 302313.CrossRefGoogle Scholar
Tricco, AC, Lillie, E, Zarin, W, et al. (2018) PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Internal Med 169, 467473.CrossRefGoogle ScholarPubMed
Levac, D, Colquhoun, H & O’Brien, KK (2010) Scoping studies: advancing the methodology. Implementation Sci 5, 29.CrossRefGoogle ScholarPubMed
Arksey, H & O’Malley, L (2005) Scoping studies: towards a methodological framework. Int J Soc Res Method 8, 1932.CrossRefGoogle Scholar
Aoki, TT (1981) Metabolic adaptations to starvation, semistarvation, and carbohydrate restriction. Prog Clin Biol Res 67, 161177.Google ScholarPubMed
Kirk, E, Reeds, DN, Finck, BN, et al. (2009) Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction. Gastroenterology 136, 15521560.CrossRefGoogle ScholarPubMed
Ramakrishnan, T & Stokes, P (1985) Beneficial effects of fasting and low carbohydrate diet in D-lactic acidosis associated with short-bowel syndrome. JPEN. J Parenteral Enteral Nutr 9, 361363.CrossRefGoogle ScholarPubMed
Nuttall, FQ, Almokayyad, MR & Gannon, CM (2015) Comparison of a carbohydrate-free diet vs. fasting on plasma glucose, insulin and glucagon in type 2 diabetes. Metab Clin Exp 64, 253262.CrossRefGoogle ScholarPubMed
Brown, AJ (2007) Low-carb diets, fasting and euphoria: is there a link between ketosis and -hydroxybutyrate (GHB)? Med Hypotheses 68, 268271.CrossRefGoogle Scholar
Aromataris, E, Fernandez, R, Godfrey, CM, et al. (2015) Summarizing systematic reviews: methodological development, conduct and reporting of an umbrella review approach. Int J Evid-Based Healthcare 13, 132140.CrossRefGoogle ScholarPubMed
Kim, DW, Kang, HC, Park, JC, et al. (2004) Benefits of the nonfasting ketogenic diet compared with the initial fasting ketogenic diet. Pediatrics 114, 16271630.CrossRefGoogle ScholarPubMed
Bergqvist, AG, Schall, JI, Gallagher, PR, et al. (2005) Fasting v. gradual initiation of the ketogenic diet: a prospective, randomized clinical trial of efficacy. Epilepsia 46, 18101819.CrossRefGoogle Scholar
Kossoff, EH, Laux, LC, Blackford, R, et al. (2008) When do seizures usually improve with the ketogenic diet? Epilepsia 49, 329333.CrossRefGoogle ScholarPubMed
Freeman, JM, Vining, EP, Kossoff, EH, et al. (2009) A blinded, crossover study of the efficacy of the ketogenic diet. Epilepsia 50, 322325.CrossRefGoogle ScholarPubMed
Hartman, AL, Rubenstein, JE & Kossoff, EH (2013) Intermittent fasting: a ‘new’ historical strategy for controlling seizures? Epilepsy Res 104, 275279.CrossRefGoogle ScholarPubMed
D’Andrea Meira, I, Romão, TT, Pires do Prado, HJ, et al. (2019) Ketogenic diet and epilepsy: what we know so far. Front Neurosci 13, 5.CrossRefGoogle ScholarPubMed
Klein, S & Wolfe, RR (1992) Carbohydrate restriction regulates the adaptive response to fasting. Am J Physiol-Endocrinol Metab 262, 631636.CrossRefGoogle ScholarPubMed
Jacobi, N, Rodin, H, Erdosi, G, et al. (2019) Long-term effects of very low-carbohydrate diet with intermittent fasting on metabolic profile in a social media-based support group. Integr Food Nutr Metab 6, 15.CrossRefGoogle Scholar
Kalam, F, Gabel, K, Cienfuegos, S, et al. (2019) Alternate day fasting combined with a low-carbohydrate diet for weight loss, weight maintenance, and metabolic disease risk reduction. Obes Sci Pract 5, 531539.CrossRefGoogle ScholarPubMed
Lichtash, C, Fung, J, Ostoich, KC, et al. (2020) Therapeutic use of intermittent fasting and ketogenic diet as an alternative treatment for type 2 diabetes in a normal weight woman: a 14-month case study. BMJ Case Rep 13, 234223.CrossRefGoogle Scholar
Blanco, JC, Khatri, A, Kifayat, A, et al. (2019) Starvation ketoacidosis due to the ketogenic diet and prolonged fasting – a possibly dangerous diet trend. Am J Case Rep 20, 17281731.CrossRefGoogle Scholar
Bowen, J, Brindal, E, James-Martin, G, et al. (2018) Randomized trial of a high protein, partial meal replacement program with or without alternate day fasting: similar effects on weight loss, retention status, nutritional, metabolic, and behavioral outcomes. Nutrients 10, 1145.CrossRefGoogle ScholarPubMed
Manabe, O, Yoshinaga, K, Ohira, H, et al. (2016) The effects of 18-h fasting with low-carbohydrate diet preparation on suppressed physiological myocardial (18)F-fluorodeoxyglucose (FDG) uptake and possible minimal effects of unfractionated heparin use in patients with suspected cardiac involvement sarcoidosis. J Nucl Cardiol 23, 244252.CrossRefGoogle Scholar
O’Driscoll, T, Minty, R, Poirier, D, et al. (2021) New obesity treatment: fasting, exercise and low carb diet-The NOT-FED study. Can J Rural Med 26, 55.Google ScholarPubMed
Kalam, F, et al. (2021) Alternate day fasting combined with a low carbohydrate diet: effect on sleep quality, duration, insomnia severity and risk of obstructive sleep apnea in adults with obesity. Nutrients 13, 211.CrossRefGoogle ScholarPubMed
Kalam, F, Gabel, K, Cienfuegos, S, et al. (2021) Changes in subjective measures of appetite during 6 months of alternate day fasting with a low carbohydrate diet. Clin Nutr ESPEN 41, 417422.CrossRefGoogle ScholarPubMed
Kalam, F, et al. (2019) Alternate day fasting combined with a high protein/low carbohydrate diet: effect on body weight and metabolic disease risk factors in obese adults. Curr Dev Nutr 3, 531539.CrossRefGoogle Scholar
Higgins, JPT & Green, S (2011) Cochrane Handbook for Systematic Reviews of Interventions version 5.1.0. https://www.cochrane-handbook.org (accessed April 2011).Google Scholar
Lang, A, Edwards, N & Fleiszer, A (2007) Empty systematic reviews: hidden perils and lessons learned. J Clin Epidemiol 60, 595597.CrossRefGoogle ScholarPubMed
Ludwig, DS & Ebbeling, BC (2018) The carbohydrate-insulin model of obesity: beyond ‘calories in, calories out’. JAMA Intern Med 178, 10981103.CrossRefGoogle ScholarPubMed
Trepanowski, JF, Kroeger, CM, Barnosky, A, et al. (2017) Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: a randomized clinical trial. JAMA Intern Med 177, 930938.CrossRefGoogle ScholarPubMed
Bhutani, S, Klempel, MC, Kroeger, CM, et al. (2013) Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obesity 21, 13701379.CrossRefGoogle ScholarPubMed
Vining, EP, Freeman, JM, Ballaban-Gil, K, et al. (1998) A multicenter study of the efficacy of the ketogenic diet. Arch Neurol 55, 14331437.CrossRefGoogle ScholarPubMed
Nordli, DR, Jr., Kuroda, MM, Carroll, J, et al. (2001) Experience with the ketogenic diet in infants. Pediatric 108, 129133.CrossRefGoogle ScholarPubMed
Field, R, Pourkazemi, F & Rooney, K (2022) Effects of a low-carbohydrate ketogenic diet on reported pain, blood biomarkers and quality of life in patients with chronic pain: a pilot randomized clinical trial. Pain Med 23, 326338.CrossRefGoogle ScholarPubMed
Bueno, NB, de Melo, IS, de Oliveira, SL, et al. (2013) Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials. Br J Nutr 110, 11781187.CrossRefGoogle ScholarPubMed
Alique, M, Luna, C, Carracedo, J, et al. (2015) LDL biochemical modifications: a link between atherosclerosis and aging. Food Nutr Res 59, 29240.CrossRefGoogle ScholarPubMed
Itabe, H, Obama, T & Kato, R (2011) The dynamics of oxidized LDL during atherogenesis. J Lipid 2011, 9.CrossRefGoogle ScholarPubMed
Austin, MA, King, M.-C, Vranizan, KM, et al. (1990) Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation 82, 495506.CrossRefGoogle ScholarPubMed
Norwitz, NG & Loh, V (2020) A standard lipid panel is insufficient for the care of a patient on a high-fat, low-carbohydrate ketogenic diet. Front Med 7, 97.CrossRefGoogle ScholarPubMed
Volek, JS & Feinman, DR (2005) Carbohydrate restriction improves the features of Metabolic Syndrome. Metabolic Syndrome may be defined by the response to carbohydrate restriction. Nutr Metab 2, 31.CrossRefGoogle ScholarPubMed
Heussinger, N, Della Marina, A, Beyerlein, A, et al. (2018) 10 patients, 10 years – long term follow-up of cardiovascular risk factors in Glut1 deficiency treated with ketogenic diet therapies: a prospective, multicenter case series. Clin Nutr 37, 22462251.CrossRefGoogle ScholarPubMed
Dong, T, Guo, M, Zhang, P, et al. (2020) The effects of low-carbohydrate diets on cardiovascular risk factors: a meta-analysis. PLoS One 15, e0225348.CrossRefGoogle ScholarPubMed
Ravnskov, U, de Lorgeril, M, Diamond, DM, et al. (2018) LDL-C does not cause cardiovascular disease: a comprehensive review of the current literature. Expert Rev Clin Pharmacol 11, 959970.CrossRefGoogle Scholar
Barendse, W (2014) Should animal fats be back on the table? A critical review of the human health effects of animal fat. Animal Prod Sci 54, 831855.CrossRefGoogle Scholar
Noakes, TD & Windt, J (2017) Evidence that supports the prescription of low-carbohydrate high-fat diets: a narrative review. Br J Sports Med 51, 133139.CrossRefGoogle ScholarPubMed
Zinn, C, Rush, A & Johnson, R (2018) Assessing the nutrient intake of a low-carbohydrate, high-fat (LCHF) diet: a hypothetical case study design. BMJ Open 8, e018846.CrossRefGoogle Scholar
Feinman, RD, Pogozelski, WK, Astrup, A, et al. (2015) Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base. Nutrition 31, 113.CrossRefGoogle ScholarPubMed