Skip to main content Accessibility help
×
Home

Wholegrain foods made from a novel high-amylose barley variety (Himalaya 292) improve indices of bowel health in human subjects

  • Anthony R. Bird (a1), Michelle S. Vuaran (a1), Roger A. King (a1), Manny Noakes (a1), Jennifer Keogh (a1), Matthew K. Morell (a2) and David L. Topping (a1)...

Abstract

Himalaya 292 (Hordeum vulgare var. Himalaya 292) is a novel hull-less barley variety lacking activity of a key enzyme of starch synthesis giving a grain containing less total starch, more amylose and higher total dietary fibre. Animal trials have shown that Himalaya 292 contains more resistant starch and has greater positive impact on biomarkers of large-bowel health than comparable wholegrain cereal products. The present study compared the effects of foods made from wholegrain Himalaya 292 with those made from wholegrain wheat on faecal biomarkers of bowel health in human subjects. Seventeen male and female volunteers aged 31–66 years consumed similar quantities of Himalaya 292, whole-wheat or refined cereal foods daily for 4 weeks in a randomised cross-over design. Total dietary fibre intakes from weighed food records were 45, 32 and 21 g/d for the Himalaya 292, whole-wheat and refined cereal periods, respectively. Compared with the refined cereal foods, consumption of Himalaya 292 foods resulted in 33 % higher faecal weight, a lowering of faecal pH from 7·24 to 6·98, a 42 % higher faecal concentration and a 91 % higher excretion of butyrate, a 57 % higher faecal total SCFA excretion and a 33 % lower faecal p-cresol concentration. pH and butyrate concentration and excretion were also significantly different compared with wholemeal wheat. It is concluded that consumption of a diet that included foods made from Himalaya 292 supplied more fibre and improved indices of bowel health compared with refined cereal foods and, for some indices, similar wholemeal wheat foods at equivalent levels of intake.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Wholegrain foods made from a novel high-amylose barley variety (Himalaya 292) improve indices of bowel health in human subjects
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Wholegrain foods made from a novel high-amylose barley variety (Himalaya 292) improve indices of bowel health in human subjects
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Wholegrain foods made from a novel high-amylose barley variety (Himalaya 292) improve indices of bowel health in human subjects
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr A. R. Bird, fax +61 8 8303 8899, email tony.bird@csiro.au

References

Hide All
1Flight, I & Clifton, P (2006) Cereal grains and legumes in the prevention of coronary heart disease and stroke: a review of the literature. Eur J Clin Nutr 60, 11451159.
2National Health and Medical Research Council (2003) Dietary Guidelines for Australian Adults. Endorsed 10 April 2003. Canberra: Commonwealth of Australia.
3Dietary Guidelines Advisory Committee (2004) Report of the Dietary Guidelines Advisory Committee on the Dietary Guidelines for Americans, 2005. Washington, DC: US Department of Health and Human Services.
4La Vecchia, C, Chatenoud, L, Negri, & Franceschi, S (2003) Whole cereal grains, fibre and human cancer – wholegrain cereals and cancer in Italy. Proc Nutr Soc 62, 4549.
5Murtaugh, MA, Jacobs, DR Jr, Jacob, B, Steffen, LM & Marquart, L (2003) Epidemiological support for the protection of whole grains against diabetes. Proc Nutr Soc 62, 143149.
6Truswell, AS (2002) Cereal grains and coronary heart disease. Eur J Clin Nutr 56, 114.
7Koh-Banerjee, P, Franz, M, Sampson, L, Liu, S, Jacobs, DR Jr, Spiegelman, D, Willett, W & Rimm, E (2004) Changes in whole-grain, bran, and cereal fibre consumption in relation to 8-y weight gain among men. Am J Clin Nutr 80, 12371245.
8Marlett, JA, McBurney, MI & Slavin, JL (2002) Position of the American Dietetic Association: health implications of dietary fibre. J Am Diet Assoc 102, 9931000.
9Aldoori, WH, Giovannucci, EL, Rockett, HR, Sampson, L, Rimm, EB & Willett, WC (1998) A prospective study of dietary fibre types and symptomatic diverticular disease in men. J Nutr 128, 714719.
10Bingham, SA, Day, NE, Luben, R, et al. (2003) Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study. Lancet 361, 14961501.
11Cummings, JH & Macfarlane, GT (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70, 443459.
12Brouns, F, Kettlitz, E & Arrigoni, E (2002) Resistant starch and the butyrate revolution. Trends Food Sci Technol 13, 251261.
13Topping, DL & Clifton, PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81, 10311064.
14Burkitt, DP (1973) Some diseases characteristic of modern Western civilization. BMJ 1, 274278.
15Segal, I (2002) Physiological small bowel malabsorption of carbohydrates protects against large bowel diseases in Africans. J Gastroenterol Hepatol 17, 249252.
16Weaver, GA, Krause, JA, Miller, TL & Wolin, MJ (1992) Cornstarch fermentation by the colonic microbial community yields more butyrate than does cabbage fibre fermentation; cornstarch fermentation rates correlate negatively with methanogenesis. Am J Clin Nutr 55, 7077.
17Cassidy, A, Bingham, SA & Cummings, JH (1994) Starch intake and colorectal cancer risk: an international comparison. Br J Cancer 69, 937942.
18van Munster, IP, Tangerman, A & Nagengast, FM (1994) Effect of resistant starch on colonic fermentation, bile acid metabolism and mucosal proliferation. Dig Dis Sci 39, 831842.
19Caderni, G, Luceri, C, Lancioni, L, Tessitore, L & Dolara, P (1998) Slow-release pellets of sodium butyrate increase apoptosis in the colon of rats treated with azoxymethane, without affecting aberrant crypt foci and colonic proliferation. Nutr Cancer 30, 175181.
20Toden, S, Bird, AR, Topping, DL & Conlon, MA (2007) Dose-dependent reduction of dietary protein-induced colonocyte DNA damage by resistant starch in rats correlates more highly with caecal butyrate than with other short chain fatty acids. Cancer Biol Ther 6, 253258.
21Muir, JG, Yeow, EGW, Keogh, J, Pizzey, C, Bird, AR, Sharpe, K, O'Dea, K & Macrae, F (2004) Combining wheat bran with resistant starch has more beneficial effects on fecal indices than does wheat bran alone. Am J Clin Nutr 79, 10201028.
22Baghurst, PA, Baghurst, KI & Record, SJ (1996) Dietary fibre, non-starch polysaccharides and resistant starch – a review. Food Aust 48, S3S35.
23Bingham, S (2000) Diet and colorectal cancer prevention. Biochem Soc Trans 28, 1216.
24Brown, I, McNaught, K & Moloney, E (1995) Hi-maize™ – new directions in starch technology and nutrition. Food Aust 47, 272275.
25Colonna, P & Mercier, C (1985) Gelatinization and melting of maize starches with normal and high amylose phenotypes. Phytochemistry 24, 16671674.
26Morell, MK, Kosar-Hashemi, B, Cmiel, M, Samuel, MS, Chandler, P, Rahman, S, Buleon, A, Batey, IL & Li, ZY (2003) Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties. Plant J 34, 173185.
27Bird, AR, Flory, C, Davies, DA, Usher, S & Topping, DL (2004) A novel barley cultivar (Himalaya 292) with a specific gene mutation in starch synthase IIa raises large bowel starch and short-chain fatty acids in rats. J Nutr 134, 831835.
28Bird, AR, Jackson, M, King, RA, Davies, DA, Usher, S & Topping, DL (2004) A novel high-amylose barley cultivar (Hordeum vulgare var Himalaya 292) lowers plasma cholesterol and alters indices of large-bowel fermentation in pigs. Br J Nutr 92, 607615.
29Topping, DL, Morell, MK, King, RA, Li, ZY, Bird, AR & Noakes, M (2003) Resistant starch and health – Himalaya 292, a novel barley cultivar to deliver benefits to consumers. Starch-Stärke 55, 539545.
30Prosky, L, Asp, NG, Furda, I, DeVries, JW, Schweizer, TF & Harland, BF (1985) Determination of total dietary fibre in foods and food products: collaborative study. J Assoc Off Anal Chem 68, 677679.
31Theander, O, Aman, P, Westerlund, E, Andersson, R & Pettersson, D (1995) Total dietary fibre determined as neutral sugar residues, uronic acid residues, and Klason lignin (the Uppsala method): collaborative study. J AOAC Int 78, 10301044.
32McCleary, B, Solah, V & Gibson, T (1994) Quantitative measurement of total starch in cereal flours and products. J Cereal Sci 20, 5158.
33Daugherty, C & Lento, H (1983) Chloroform-methanol extraction method for determination of fat in foods. J Assoc Off Anal Chem 66, 927932.
34Kirsten, W, Ternud, I & Hesselius, G (1984) Automatic simultaneous determination of nitrogen and moisture in grain with or without weighing. J Agric Food Chem 32, 279284.
35Murray, KE & Adams, RF (1988) Determination of simple phenols in faeces and urine by high-performance liquid chromatography. J Chromatogr 431, 143149.
36Yoshikawa, M, Taguchi, Y, Arashidani, K & Kodama, Y (1986) Determination of cresols in urine by high-performance liquid chromatography. J Chromatogr 362, 425429.
37Chaney, A & Marvach, E (1962) Modified reagents for determination of urea and ammonia. Clin Chem 8, 130132.
38Pachenari, A, Conway, P & Playne, M (2001) Bifidus-blood agar – a differentiating medium for the isolation and enumeration of bifidobacteria from faecal samples. Biosci Microflora 20, 8588.
39Keogh, JB, Lau, CW, Noakes, M, Bowen, J & Clifton, PM (2007) Effects of meals with high soluble fibre, high amylose barley variant on glucose, insulin, satiety and thermic effect of food in healthy lean women. Eur J Clin Nutr 61, 597604.
40McIntosh, GH, Noakes, M, Royle, PJ & Foster, PR (2003) Whole-grain rye and wheat foods and markers of bowel health in overweight middle-aged men. Am J Clin Nutr 77, 967974.
41Barclay, AW, Brand-Miller, JC & Mitchell, P (2006) Macronutrient intake, glycaemic index and glycaemic load of older Australian subjects with and without diabetes: baseline data from the Blue Mountains Eye study. Br J Nutr 96, 117123.
42Haack, VS, Chesters, JG, Vollendorf, NW, Story, JA & Marlett, JA (1992) Increasing amounts of dietary fibre provided by foods normalizes physiologic response of the large bowel without altering calcium balance or faecal steroid excretion. Am J Clin Nutr 68, 615622.
43Baghurst, KI, Hope, AK & Down, EC (1985) Dietary intake in a group of institutionalised elderly and the effect of a fibre supplementation programme on nutrient intake and weight gain. Community Health Stud 9, 99108.
44Cummings, JH, Bingham, SA, Heaton, KW & Eastwood, MA (1992) Faecal weight, colon cancer risk, and dietary-intake of nonstarch polysaccharides (dietary fibre). Gastroenterology 103, 17831789.
45Birkett, AM, Jones, GP, de Silva, AM, Young, GP & Muir, JG (1997) Dietary intake and faecal excretion of carbohydrate by Australians: importance of achieving stool weights greater than 150 g to improve faecal markers relevant to colon cancer risk. Eur J Clin Nutr 51, 625632.
46Topping, DL (1998) Physiological effects of dietary carbohydrates in the large bowel: is there a need to recognise dietary fibre equivalents? Asia Pacific J Clin Nutr 8, Suppl., S22S26.
47Cummings, JH (1993) The effect of dietary fibre on faecal weight and composition. In CRC Handbook of Dietary Fiber in Human Nutrition, 2nd ed., pp. 263349 [Spiller, GA, editor]. Boca Raton, FL: CRC Press.
48McBurney, MI (1991) Potential water-holding capacity and short-chain fatty acid production from purified fiber sources in a fecal incubation system. Nutrition 7, 421424.
49Burkitt, DP, Walker, AR & Painter, NS (1972) Effect of dietary fibre on stools and the transit-times, and its role in the causation of disease. Lancet ii, 14081412.
50Read, NW, Miles, CA, Fisher, D, Holgate, AM, Kime, ND, Mitchell, MA, Reeve, AM, Roche, TB & Walker, M (1980) Transit of a meal through the stomach, small intestine, and colon in normal subjects and its role in the pathogenesis of diarrhea. Gastroenterology 79, 12761282.
51Weber, FL Jr (1997) Effects of lactulose on nitrogen metabolism. Scand J Gastroenterol 222, Suppl., 8387.
52Birkett, A, Muir, J, Phillips, J, Jones, G & O'Dea, K (1996) Resistant starch lowers faecal concentrations of ammonia and phenols in humans. Am J Clin Nutr 63, 766772.
53Topping, DL, Fukushima, M & Bird, AR (2003) Resistant starch as a prebiotic and synbiotic: state of the art. Proc Nutr Soc 62, 171176.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed