Skip to main content Accessibility help
×
×
Home

Wild blueberry (Vaccinium angustifolium)-enriched diet improves dyslipidaemia and modulates the expression of genes related to lipid metabolism in obese Zucker rats

  • Stefano Vendrame (a1), Allison Daugherty (a1), Aleksandra S. Kristo (a1) and Dorothy Klimis-Zacas (a1)
Abstract

The present study investigated the potential of a wild blueberry (WB)-enriched diet to improve blood lipid profile and modulate the expression of genes related to lipid homeostasis in obese Zucker rats (OZR), a model of the metabolic syndrome with severe dyslipidaemia. For this purpose, twenty OZR and twenty lean Zucker rats (LZR; controls) were placed either on a control (C) or an 8 % WB diet for 8 weeks. Plasma total cholesterol (TC), HDL-cholesterol and TAG concentrations were determined. The relative expression of six genes involved in lipid metabolism was also determined in both the liver and the abdominal adipose tissue (AAT). Plasma TAG and TC concentrations were significantly lower in the OZR following WB consumption (4228 (sem 471) and 2287 (sem 125) mg/l, respectively) than in those on the C diet (5475 (sem 315) and 2631 (sem 129) mg/l, P< 0·05), while there was no change in HDL-cholesterol concentration. No significant effects were observed for plasma lipids in the LZR. Following WB consumption, the expression of the transcription factors PPARα and PPARγ in the OZR was increased in the AAT, while that of sterol regulatory element-binding protein 1 (SREBP-1) was decreased in the liver and AAT. The expression of fatty acid synthase was significantly decreased in both the liver and AAT and that of ATP-binding cassette transporter 1 was increased in the AAT following WB consumption. In conclusion, WB consumption appears to improve lipid profiles and modulate the expression of key enzymes and transcription factors of lipid metabolism in severely dyslipidaemic rats.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Wild blueberry (Vaccinium angustifolium)-enriched diet improves dyslipidaemia and modulates the expression of genes related to lipid metabolism in obese Zucker rats
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Wild blueberry (Vaccinium angustifolium)-enriched diet improves dyslipidaemia and modulates the expression of genes related to lipid metabolism in obese Zucker rats
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Wild blueberry (Vaccinium angustifolium)-enriched diet improves dyslipidaemia and modulates the expression of genes related to lipid metabolism in obese Zucker rats
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author: Professor D. Klimis-Zacas, fax +1 207 581 1636, email dorothy.klimis@umit.maine.edu
References
Hide All
1 Roger, VL, Go, AS, Lloyd-Jones, DM, et al. (2012) Heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation 125, e2e220.
2 Prasad, H, Ryan, DA, Celzo, MF, et al. (2012) Metabolic syndrome: definition and therapeutic implications. Postgrad Med 124, 2130.
3 Leão, LS, de Moraes, MM, de Carvalho, GX, et al. (2011) Nutritional interventions in metabolic syndrome: a systematic review. Arq Bras Cardiol 97, 260265.
4 De Artiñano, A & Castro, M (2009) Experimental rat models to study the metabolic syndrome. Br J Nutr 9, 12461253.
5 Frisbee, JC & Delp, MD (2006) Vascular function in the metabolic syndrome and the effects on skeletal muscle perfusion: lessons from the obese Zucker rat. Essays Biochem 42, 145161.
6 Häkkinen, SH & Törrönen, AR (1999) Screening of selected flavonoids and phenolic acids in 19 berries. J Food Res Int 32, 345353.
7 Norton, C, Kalea, AZ, Harris, PD, et al. (2005) Wild blueberry rich diets affect the contractile machinery of the vascular smooth muscle in the Sprague–Dawley rat. J Med Food 8, 813.
8 Kristo, AS, Kalea, AZ, Schuschke, DA, et al. (2010) A wild blueberry-enriched diet (Vaccinium angustifolium) improves vascular tone in the adult spontaneously hypertensive rat. J Agric Food Chem 58, 1160011605.
9 Wei, X, Wang, D, Yang, Y, et al. (2011) Cyanidin-3-O-β-glucoside improves obesity and triglyceride metabolism in KK-Ay mice by regulating lipoprotein lipase activity. J Sci Food Agric 91, 10061013.
10 Tsuda, T, Ueno, Y, Kojo, H, et al. (2005) Gene expression profile of isolated rat adipocytes treated with anthocyanins. Biochim Biophys Acta 1733, 137147.
11 Xia, M, Hou, M, Zhu, H, et al. (2005) Anthocyanins induce cholesterol efflux from mouse peritoneal macrophages: the role of the peroxisome proliferator-activated receptor-γ-liver X receptor-α-ABCA1 pathway. J Biol Chem 280, 3679236801.
12 Seymour, EM, Singer, AA, Kirakosyan, A, et al. (2009) Altered hyperlipidemia, hepatic steatosis, and hepatic peroxisome proliferator-activated receptors in rats with intake of tart cherry. J Med Food 11, 252259.
13 Tsuda, T, Horio, F, Uchida, K, et al. (2003) Dietary cyanidin 3-O-beta-d-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J Nutr 133, 21252130.
14 Seymour, EM, Tanone, Urcuyo-Ll II, anes, DE, et al. (2011) Blueberry intake alters skeletal muscle and adipose tissue peroxisome proliferator-activated receptor activity and reduces insulin resistance in obese rats. J Med Food 14, 15111518.
15 Del Bo’, C, Ciappellano, S, Klimis-Zacas, D, et al. (2010) Anthocyanin absorption, metabolism, and distribution from a wild blueberry-enriched diet (Vaccinium angustifolium) is affected by diet duration in the Sprague–Dawley rat. J Agric Food Chem 58, 24912497.
16 Singleton, VL, Orthofer, R & Lamuela-Ravent, RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol 299, 152178.
17 AOAC Method 991.43 (1995) Total, Insoluble and Soluble Dietary Fiber in Food – Enzymatic-Gravimetric Method, MES-TRIS Buffer. Official Methods of Analysis, 16th ed. Gaithersburg, MD: AOAC International.
18 Vendrame, S, Guglielmetti, S, Riso, P, et al. (2011) Six-week consumption of a wild blueberry powder drink increases bifidobacteria in the human gut. J Agric Food Chem 59, 1281512820.
19 Reagan-Shaw, S, Nihal, M & Ahmad, N (2007) Dose translation from animal to human studies revisited. FASEB J 22, 659661.
20 Livak, KJ & Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the Delta Delta CT method. Methods 25, 402408.
21 Kalt, W, Foote, K, Fillmore, SA, et al. (2008) Effect of blueberry feeding on plasma lipids in pig. Br J Nutr 100, 7078.
22 Basu, A, Du, M, Leyva, MJ, et al. (2010) Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J Nutr 140, 15821587.
23 Riso, P, Klimis-Zacas, D, Del Bo’, C, et al. (2012) Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors. Eur J Nutr 52, 949961.
24 Zhu Y, Ling W, Guo H, et al. (2012) Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: a randomized controlled trial. Nutr Metab Cardiovasc Dis (Epublication ahead of print version 17 August 2012).
25 Wang, H & Eckel, RH (2009) Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab 297, e271e288.
26 Griffin, MJ & Sul, HS (2004) Insulin regulation of fatty acid synthase gene transcription: roles of USF and SREBP-1c. IUBMB Life 56, 595600.
27 Soumian, S, Albrecht, C, Davies, AH, et al. (2005) ABCA1 and atherosclerosis. Vasc Med 10, 109119.
28 Horton, JD, Goldstein, JL & Brown, MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109, 11251131.
29 Fruchart, JC (2009) Peroxisome proliferator-activated receptor alpha (PPAR-α): at the crossroads of obesity, diabetes and cardiovascular disease. Atherosclerosis 205, 18.
30 Takano, H & Komuro, I (2009) Peroxisome proliferator-activated receptor-γ and cardiovascular diseases. Circ J 73, 214220.
31 Poynter, ME & Daynes, RA (1998) Peroxisome proliferator-activated receptor-α activation modulates cellular redox status, represses nuclear factor-kappaB signaling, and reduces inflammatory cytokine production in aging. J Biol Chem 273, 3283332841.
32 Vendrame, S, Daugherty, A, Kristo, AS, et al. (2012) Wild blueberry consumption markedly attenuates concentration and expression of inflammatory markers in the obese Zucker rat. FASEB J 26, 385·5.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed