Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-tcprc Total loading time: 0.743 Render date: 2023-02-03T05:03:03.088Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

THE CONVENIENCE OF THE TYPESETTER; NOTATION AND TYPOGRAPHY IN FREGE’S GRUNDGESETZE DER ARITHMETIK

Published online by Cambridge University Press:  09 April 2015

J. J. GREEN
Affiliation:
WANSTEAD, LONDON, UKE-mail:j.j.green@gmx.co.uk
MARCUS ROSSBERG
Affiliation:
DEPARTMENT OF PHILOSOPHY, UNIVERSITY OF CONNECTICUT, USAE-mail:marcus.rossberg@uconn.edu
PHILIP A. EBERT
Affiliation:
DIVISION OF LAW AND PHILOSOPHY, UNIVERSITY OF STIRLING, SCOTLAND, UKE-mail:p.a.ebert@stir.ac.uk

Abstract

We discuss the typography of the notation used by Gottlob Frege in his Grundgesetze der Arithmetik.

Type
Articles
Copyright
Copyright © The Association for Symbolic Logic 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham, M. and Langevin, Paul, Notions géométriques fondamentales, Encyclopédie des sciences mathématiques pures et appliquées, tome IV, vol. 5, Gauthier-Villars, Paris, 1912, pp. 160.Google Scholar
Boccuni, Francesca, Plural Grundgesetze. Studia Logica, vol. 96 (2010), pp. 315330.Google Scholar
Brockhaus’ Konversations-Lexikon, 14th ed., vol. 10, Brockhaus, Leipzig, 1894.
Thomas John I’Anson Bromwich, An introduction to the theory of infinite series, 1 ed., Macmillan, London, 1908.
Burgess, John P., Fixing Frege, Princeton Monographs in Philosophy, Princeton University Press, Princeton, NJ, 2005.Google Scholar
Byrne, Oliver, Dual arithmetic: A new art, Bell and Daldy, London, 1863.Google Scholar
Cajori, Florian, A history of mathematical notations, vol. II, Open Court, Chicago, 1952.Google Scholar
Cantor, Georg, Ueber unendliche, lineare Punktmannichfaltigkeiten. 5. Fortsetzung: Grundlagen einer allgemeinen Mannigfaltigkeitslehre, Mathematische Annalen, vol. XXI (1883), pp. 545590. English translation by William Ewald in [17], vol. II, pp. 881–920.Google Scholar
Cook, Roy T., How to read Grundgesetze, [28], pp. A1–A42 (appendix).
Cook, Roy T., Frege’s little theorem and Frege’s way out, Essays on Frege’s Basic Laws of Arithmetic (Ebert, Philip A. and Rossberg, Marcus, editors), Oxford University Press, Oxford, 2014.Google Scholar
Courbe, H., Review of [21], Polybiblion: Revue bibliographique universelle. Partie Littéraire. Deuxième Série. Tome Quarantième, vol. 71 (1894), pp. 428429. English translation by Charlotte A. Geniez in Ebert and Rossberg [16].Google Scholar
Dummett, Michael, Frege’s way out: A footnote to a footnote. Analysis, vol. 33 (1971), pp. 139140.CrossRefGoogle Scholar
Dummett, Michael, Frege: Philosophy of language, 2nd ed., Harvard University Press, Cambridge, MA, 1981.Google Scholar
Ebert, Philip A. and Rossberg, Marcus, Cantor on Frege’s Foundations of Arithmetic: Cantor’s 1885 review of Frege’s Die Grundlagen der Arithmetik. History and Philosophy of Logic, vol. 30 (2009), pp. 341348.CrossRefGoogle Scholar
Ebert, Philip A. and Rossberg, Marcus, Translators’ introduction, [28], pp. xiii–xxxix.
Ebert, Philip A. and Rossberg, Marcus (editors), Essays on Frege’s Basic Laws of Arithmetic, Oxford University Press, Oxford, forthcoming.
Ewald, William Bragg (editor), From Kant to Hilbert: A source book in the foundations of mathematics. 2 vols., Oxford University Press, Oxford, 1996.Google Scholar
Ferreira, Fernando and Wehmeier, Kai F., On the consistency of the $\Delta _1^1 $-CA fragment of Frege’s Grundgesetze. Journal of Philosophical Logic, vol. 31 (2002), no. 4, pp. 301311.CrossRefGoogle Scholar
Frege, Gottlob, Begriffsschrift: Eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Verlag L. Nebert, Halle a. d. Saale, 1879, English translation by S. Bauer-Mengelberg in [53], pp. 1–82; and by T. W. Bynum in [26].Google Scholar
Frege, Gottlob, Die Grundlagen der Arithmetik. Eine logisch mathematische Untersuchung über den Begriff der Zahl, Wilhelm Koebner, Breslau, 1884, English translation: [25].Google Scholar
Frege, Gottlob, Grundgesetze der Arithmetik, vol. 1, Hermann Pohl, Jena, 1893, English translation in [28].Google Scholar
Frege, Gottlob, Ueber die Begriffsschrift des Herrn Peano und meine eigene, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physikalische Klasse, vol. XLVIII (1897), pp. 361378, English translation in [27].Google Scholar
Frege, Gottlob, Grundgesetze der Arithmetik, vol. 2, Hermann Pohl, Jena, 1903, English translation in [28].Google Scholar
Frege, Gottlob, Antwort auf die Ferienplauderei des Herrn Thomae. Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 15 (1906), pp. 586590. English translation in [27], pp. 341–345.Google Scholar
Frege, Gottlob, The foundations of arithmetic. Translated by Austin, J. L., Blackwell, Oxford, 1950.Google Scholar
Frege, Gottlob, Conceptual notation and related articles. Ed. and trans. by Bynum, T. W., Oxford University Press, Oxford, 1972.Google Scholar
Frege, Gottlob, Collected papers on mathematics, logic, and philosophy. Ed. by McGuinness, B., Blackwell, Oxford, 1984.Google Scholar
Frege, Gottlob, Basic laws of arithmetic. Ed. and trans. by Ebert, P. A. and Rossberg, M., Oxford University Press, Oxford, 2013.Google Scholar
Hardy, G. H., Collected papers of G. H. Hardy: Including joint papers with J. E. Littlewood, vol. VI, Clarendon Press, Oxford, 1974.Google Scholar
Hardy, G. H. and Littlewood, J. E., Theorems concerning the summability of series by Borel’s exponential method, Rendiconti del Circolo Matematico di Palermo, First Series, vol. 41 (1916), pp. 3653, Reprinted in [29, p. 609].CrossRefGoogle Scholar
Hardy, Godfrey Harold, A course of pure mathematics, University of Michigan Library, Ann Arbor, 1908.Google Scholar
Heck, Richard G. Jr, The consistency of predicative fragments of Frege’s Grundgesetze der Arithmetic. History and Philosophy of Logic, vol. 17 (1996), pp. 209220.CrossRefGoogle Scholar
Heck, Richard G. Jr, Frege’s theorem, Oxford University Press, Oxford, 2011.Google Scholar
Heck, Richard G. Jr, Reading Frege’s Grundgesetze, Oxford University Press, Oxford, 2012.Google Scholar
Hilbert, David, Neubegründung der Mathematik. Abhandlungen aus dem Mathematischen Seminar der Hamburger Universität, vol. 1 (1922), pp. 157177.CrossRefGoogle Scholar
Himmer, J. P., Unsere Schriften/Buchdruckerei, Himmer, Augsburg, 1933. Printer’s specimen, copies at the Bayerische Staatsbibliothek, Munich and at the Staats- und Stadtbibliothek, Augsburg.Google Scholar
Hurewicz, W., On duality theorems. American Mathematical Society, Bulletin, vol. 47 (1941), pp. 562563.Google Scholar
Kreiser, Lothar, Gottlob Frege: Leben, Werk, Zeit, Meiner Felix Verlag, Hamburg, 2001.Google Scholar
Landini, Gregory, The ins and outs of Frege’s way out. Philosophia Mathematica, vol. 14 (2006), pp. 125.CrossRefGoogle Scholar
Landini, Gregory, Frege’s notations: What they are and how they mean, Palgrave Macmillan, New York, 2012.CrossRefGoogle Scholar
Leathem, John Gaston, Volume and surface integrals used in physics, Cambridge Tracts in Mathematics and Mathematical Physics, vol. 1, Cambridge University Press, Cambridge, 1905.Google Scholar
Mac Lane, Saunders, Categories for the working mathematician, Springer, New York, 1971.CrossRefGoogle Scholar
Quine, W. V., Methods of logic, Henry Holt, New York, 1950.Google Scholar
Quine, W. V., On Frege’s way out. Mind, vol. 64 (1955), pp. 145159.CrossRefGoogle Scholar
Renfro, Dave L., The arrow notation for limits, http://jeff560.tripod.com/calculus.html, 2010.
Romanovsky, V., Sur une généralisation de la loi sinusoïdale limite. Rendiconti del Circolo Matematico di Palermo, First Series, vol. 57 (1933), pp. 130136.CrossRefGoogle Scholar
Russell, Bertrand, Letter to Frege, In van Heijenoort [53], pp. 124125.
Schellbach, , Über die Zeichen der Mathematik. Journal für die reine und angewandte Mathematik (Crelle’s Journal), vol. XII (1834), no. 1–2, pp. 7081, 148–166.CrossRefGoogle Scholar
Sobociński, Boleław, L’analyse de l’antinomie russellienne par Leśniewski, Methodos, vol. 12 (1949-1950), pp. 94107, 220–228, 308–316; 6–7, 237–257. English translation by Robert E. Clay: [50].Google Scholar
Sobociński, Boleław, Leśniewski’s Analysis of Russell’s Paradox, Leśniewski’s systems: Ontology and mereology (Srzednicki, J. T. J., Rickey, V. F., and Czelakowski, J., editors), Martinus Nijhoff, Boston, 1984, pp. 1144.CrossRefGoogle Scholar
Stötzner, Andreas, Gewichts- und Währungszeichen: Übersicht, Auszug aus Signa: Beiträge zur Signographie 3 (2002): Zweite ergänzte Fassung 1.2, 2005.Google Scholar
Thomae, J., Elementare Theorie der analytischen Functionen einer complexen Veränderlichen, 2nd ed., Nebert, Halle a. d. Saale, 1898.Google Scholar
van Heijenoort, Jean (editor), From Frege to Gödel: A source book in mathematical logic 1879–1931, Harvard University Press, Cambridge, MA, 1967.Google Scholar
Vilkko, Risto, The Reception of Frege’s Begriffsschrift. Historia Mathematica, vol. 25 (1998), pp. 412422, article no. HM982213.CrossRefGoogle Scholar
Waldow, Alexander (editor), Illustrierte Encyklopädie der graphischen Künste und der verwandten Zweige, Druck und Verlag von Alexander Waldow, Leipzig, 1884.Google Scholar
Wehmeier, Kai F., Consistent fragments of Grundgesetze and the existence of non-logical objects. Synthese, vol. 121 (1999), pp. 309328.CrossRefGoogle Scholar
Wehmeier, Kai F. and Schmidt am Busch, H.-C., The quest for Frege’s Nachlass, Critical assessments of leading philosophers: Gottlob Frege (Beaney, Michael and Reck, Erich, editors), vol. 1, Routledge, London, 2005, pp. 5467.Google Scholar
Wright, Crispin, Frege’s conception of numbers as objects, Scots Philosophical Monograph Series, no. 2, Aberdeen University Press, Aberdeen, 1983.Google Scholar
2
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

THE CONVENIENCE OF THE TYPESETTER; NOTATION AND TYPOGRAPHY IN FREGE’S GRUNDGESETZE DER ARITHMETIK
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

THE CONVENIENCE OF THE TYPESETTER; NOTATION AND TYPOGRAPHY IN FREGE’S GRUNDGESETZE DER ARITHMETIK
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

THE CONVENIENCE OF THE TYPESETTER; NOTATION AND TYPOGRAPHY IN FREGE’S GRUNDGESETZE DER ARITHMETIK
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *