Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-8sgpw Total loading time: 0.71 Render date: 2021-02-27T13:09:53.342Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

NONSTANDARD MODELS IN RECURSION THEORY AND REVERSE MATHEMATICS

Published online by Cambridge University Press:  26 June 2014

C. T. CHONG
Affiliation:
DEPARTMENT OF MATHEMATICS NATIONAL UNIVERSITY OF SINGAPORE 10 LOWER KENT RIDGE ROAD SINGAPORE 119076, SINGAPORE
WEI LI
Affiliation:
DEPARTMENT OF MATHEMATICS NATIONAL UNIVERSITY OF SINGAPORE 10 LOWER KENT RIDGE ROAD SINGAPORE 119076, SINGAPORE
YUE YANG
Affiliation:
DEPARTMENT OF MATHEMATICS NATIONAL UNIVERSITY OF SINGAPORE 10 LOWER KENT RIDGE ROAD SINGAPORE 119076, SINGAPORE

Abstract

We give a survey of the study of nonstandard models in recursion theory and reverse mathematics. We discuss the key notions and techniques in effective computability in nonstandard models, and their applications to problems concerning combinatorial principles in subsystems of second order arithmetic. Particular attention is given to principles related to Ramsey’s Theorem for Pairs.

Type
Articles
Copyright
Copyright © The Association for Symbolic Logic 2014 

Access options

Get access to the full version of this content by using one of the access options below.

References

Klaus, Ambos-Spies, Jockusch, Carl G., Shore, Richard A., and Soare, Robert I., An algebraic decomposition of the recursively enumerable degrees and the coincidence of several degree classes with the promptly simple class. Transactions of the American Mathematical Society, vol. 281 (1984), no. 1, pp. 109128.Google Scholar
Chang, C. C. and Jerome Keisler, H., Model Theory, Studies in Logic and the Foundations of Mathematics, vol. 73, North–Holland Publishing Company, Amsterdam, 1973.
Cholak, Peter, Jockusch, Carl G., and Slaman, Theodore A., On the strength of Ramsey’s theorem for pairs. Journal of Symbolic Logic, vol. 66 (2001), no. 1, pp. 155.CrossRefGoogle Scholar
Cholak, Peter, Jockusch, Carl G., and Slaman, Theodore A., Corrigendum to: “On the strength of Ramsey’s theorem for pairs”. Journal of Symbolic Logic, vol. 74 (2009), no. 4, pp. 14381439.CrossRefGoogle Scholar
Chong, C. T., Techniques of Admissible Recursion Theory, Lecture Notes in Mathematics, vol. 1106, Springer–Verlag, Berlin, Heidelberg, 1984.
Chong, C. T., Qian, Lei, Slaman, Theodore A., and Yang, Yue, ${\rm{\Sigma }}_2 $induction and infinite injury priority arguments, Part III: Prompt sets, minimal pair and Shoenfield’s conjecture. Israel Journal of Mathematics, vol. 121 (2001), no. 1, pp. 128.CrossRefGoogle Scholar
Chong, C. T., Lempp, Steffen, and Yang, Yue, On the role of the collection principle for ${\rm{\Sigma }}_2^0 $-formulas in second-order reverse mathematics. Proceedings of the American Mathematical Society, vol. 138 (2010), no. 3, pp. 10931100.CrossRefGoogle Scholar
Chong, C. T. and Mourad, K. J., ${\rm{\Sigma }}_n $definable sets without ${\rm{\Sigma }}_n $induction. Transactions of the American Mathematical Society, vol. 334 (1992), no. 1, pp. 349–363.
Chong, C. T. and Mourad, K. J., The degree of a ${\rm{\Sigma }}_n $cut. Annals of Pure and Applied Logic, vol. 48 (1980), no. 3, pp. 227–235.
Chong, C. T., Shore, Richard A., and Yang, Yue, Interpreting arithmetic in the r.e. degrees under Σ4induction. Reverse Mathematics 2001 (Stephen G. Simpson, editor), Association for Symbolic Logic, 2005, pp. 120–146.
Chong, C. T., Slaman, Theodore A., and Yang, Yue, ${\rm{\Pi }}_1^1 $-conservation of combinatorial principles weaker than Ramsey’s theorem for pairs. Advances in Mathematics, vol. 230 (2012), no. 3, pp. 10601077.CrossRefGoogle Scholar
Chong, C. T., Slaman, Theodore A., and Yang, Yue, The metamathematics of stable Ramsey’s theorem for pairs. Journal of the American Mathematical Society, vol. 27 (2014), no. 3, pp. 863892.CrossRefGoogle Scholar
Chong, C. T., Slaman, Theodore A., and Yang, Yue, The inductive strength of Ramsey’s theorem for pairs. in preparation.
Chong, C. T. and Yang, Yue, Σ2induction and infinite injury priority arguments, part II: Tame Σ2coding and the jump operator. Annals of Pure and Applied Logic, vol. 87 (1997), no. 2, pp. 103–116.
Chong, C. T. and Yang, Yue, Recursion theory in weak fragments of Peano arithmetic: A study of cuts. Proceedings of the Sixth Asian Logic Conference (Beijing, China) (Chong, C. T., Feng, Q., Ding, D., Huang, Q., and Yasugi, M., editors), World Scientific, 1998, pp. 4765.CrossRefGoogle Scholar
Chong, C. T. and Yang, Yue, Σ2induction and infinite injury priority arguments, part I: Maximal sets and the jump operator. Journal of Symbolic Logic, vol. 63 (1998), no. 3, pp. 797–814.
Chong, C. T. and Yang, Yue, The jump of a Σn-cut. Journal of the London Mathematical Society, second series, vol. 75 (2007), no. 3, pp. 690–704.
Chubb, Jennifer, Hirst, Jeffry L., and McNicholl, Timothy H., Reverse mathematics, computability, and partitions of trees. Journal of Symbolic Logic, vol. 74 (2009), no. 1, pp. 201215.CrossRefGoogle Scholar
Barry Cooper, S., Degrees of Unsolvability, Ph.D. thesis, Leicester University, 1971.
Corduan, Jared, Groszek, Marcia J., and Mileti, Joseph R., Reverse mathematics and Ramsey’s property for trees. Journal of Symbolic Logic, vol. 75 (2010), no. 3, pp. 945954.CrossRefGoogle Scholar
Conidis, Chris J. and Slaman, Theodore A., Random reals, the rainbow Ramsey theorem, and arithmetic conservation. Journal of Symbolic Logic, vol. 78 (2013), no. 1, pp. 195206. Abstract.CrossRefGoogle Scholar
Csima, Barbara F. and Mileti, Joseph R., The strength of the rainbow Ramsey theorem. Journal of Symbolic Logic, vol. 74 (2009), no. 4, pp. 13101324.CrossRefGoogle Scholar
Downey, Rod, Hirschfeldt, Denis R., Lempp, Steffen, and Solomon, Reed, A ${\rm{\Delta }}_2^0 $set with no infinite low subset in either it or its complement. Journal of Symbolic Logic, vol. 66 (2001), no. 3, pp. 1371–1381.
Friedberg, Richard M., Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication. Journal of Symbolic Logic, vol. 23 (1958), no. 3, pp. 309–316.
Groszek, Marcia J., Mytilinaios, Michael E., and Slaman, Theodore A., The Sacks density theorem and Σ2 -bounding. Journal of Symbolic Logic, vol. 61 (1996), no. 2, pp. 450–467.
Groszek, Marcia J. and Slaman, Theodore A., On Turing reducibility. 1994, preprint.
Hirschfeldt, Denis and Shore, Richard A., Combinatorial principles weaker than Ramsey’s theorem for pairs. Journal of Symbolic Logic, vol. 72 (2007), no. 1, pp. 171206.CrossRefGoogle Scholar
Hirst, Jeffry L., Combinatorics in Subsystems of Second Order Arithmetic, Ph.D. thesis, Pennsylvania State University, 1987.
Jensen, Ronald B., The fine structure of the constructible hierarchy. Annals of Mathematical Logic, vol. 4 (1972), pp. 229308.CrossRefGoogle Scholar
Jockusch, Carl G., Ramsey’s theorem and recession theory. Journal of Symbolic Logic, vol. 37 (1972), no. 2, pp. 268280.CrossRefGoogle Scholar
Jockusch, Carl G. Jr. and Stephan, Frank, A cohesive set which is not high. Mathematical Logic Quarterly, vol. 39 (1993), pp. 515530.CrossRefGoogle Scholar
Kaye, Richard, Models of Peano arithmetic, Oxford Logic Guides, vol. 15, the Clarendon Press Oxford University Press, 1991.
Kirby, Laurie A. and Paris, Jeff B., Σn-collection schemas in arithmetic. Logic Colloquium ’77 (J. Barwise, D. Kaplan, H. J. Keisler, P. Suppes, and A. S. Troelstra, editors), North–Holland Publishing Company, Amsterdam, 1978, pp. 199–209.
Kreisel, Georg, Some reasons for generalizing recursion theory. Logic Colloquium ’69 (Gandy, R. O. and Yates, C. E. M., editors), North–Holland Publishing Company, Amsterdam, 1971, pp. 139198.CrossRefGoogle Scholar
Kummer, Martin, An easy priority-free proof of a theorem of Friedberg. Theoretical Computer Science, vol. 74 (1990), no. 2, pp. 249251.CrossRefGoogle Scholar
Lachlan, Alistair H., A recursively enumerable degree which will not split over all lesser ones. Annals of Mathematical Logic, vol. 9 (1975), no. 4, pp. 307365.CrossRefGoogle Scholar
Lachlan, Alistair H., Bounding minimal pairs. Journal of Symbolic Logic, vol. 44 (1979), no. 4, pp. 626642.CrossRefGoogle Scholar
Lerman, Manuel, On suborderings of the α-recursively enumerable α-degrees. Annals of Mathematical Logic, vol. 4 (1972), pp. 369392.CrossRefGoogle Scholar
Lerman, Manuel and Simpson, Stephen G., Maximal sets in α-recursion theory. Israel Journal of Mathematics, vol. 4 (1973), pp. 236247.CrossRefGoogle Scholar
Lerman, Manuel, Solomon, Reed, and Towsner, Henry, Separating principles below Ramsey’s Theorem for Pairs. Journal of Mathematical Logic, vol. 13 (2013), no. 2, 1350007, 44 pp.CrossRefGoogle Scholar
Li, Wei, Friedberg numbering in fragments of Peano arithmetic and α-recursion theory. Journal of Symbolic Logic, vol. 78 (2013), no. 4, pp. 11351163.CrossRefGoogle Scholar
Li, Wei, ${\rm{\Delta }}_2 $degrees without Σ1induction. Israel Journal of Mathematics, to appear.
Liu, Jiayi, $RT_2^2 $does not prove WKL 0. Journal of Symbolic Logic, vol. 77 (2012), no. 2,pp. 609–620.
Maass, Wolfgang A., Recursively enumerable generic sets. Journal of Symbolic Logic, vol. 47 (1982), no. 4, pp. 809823.CrossRefGoogle Scholar
McAloon, Kenneth, Completeness theorems, incompleteness theorems and models of arithmetic. Transactions of the American Mathematical Society, vol. 239 (1978), pp. 253277.CrossRefGoogle Scholar
Mourad, K. J., Recursion Theoretic Statements Equivalent to Induction Axioms for Arithmetic, Ph.D. thesis, University of Chicago, 1988.
Mytilinaios, Michael E., Finite injury andΣ1 -induction. Journal of Symbolic Logic, vol. 54 (1989), no. 1, pp. 38–49.
Mytilinaios, Michael E., and Slaman, Theodore A., collection and the infinite injury priority method. Journal of Symbolic Logic, vol. 53 (1988), no. 1, pp. 212–221.
Robinson, Abraham, Nonstandard Analysis (revised edition), Princeton Landmarks in Mathematics, Princeton University Press, 1996.
Sacks, Gerald E., Higher Recursion Theory, Perspectives in Logic, vol. 2, Springer–Verlag, Berlin, Heidelberg, 1990.CrossRefGoogle Scholar
Sacks, Gerald E. and Simpson, Stephen G., The α-finite injury method. Annals of Pure and Applied Logic, vol. 4 (1972), pp. 343367.Google Scholar
Seetapun, David and Slaman, Theodore A., On the strength of Ramsey’s theorem. Notre Dame Journal of Formal Logic, vol. 36 (1995), no. 4, pp. 570582.Google Scholar
Shore, Richard A., Splitting an α-recursively enumerable set. Transactions of the American Mathematical Society, vol. 204 (1975), pp. 6578.Google Scholar
Shore, Richard A., On the jump of an α-recursively enumerable set. Transactions of the American Mathematical Society, vol. 217 (1976), pp. 351363.Google Scholar
Shore, Richard A. and Slaman, Theodore A., Working below a high recursively enumerable degree. Journal of Symbolic Logic, vol. 58 (1993), no. 3, pp. 824859.CrossRefGoogle Scholar
Simpson, Stephen G., Subsystems of Second Order Arithmetic, Perspectives in Logic, Springer–Verlag, Berlin, 1999.CrossRefGoogle Scholar
Skolem, Th., Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen. Fundamenta Mathematicae, vol. 23 (1934), no. 1, pp. 150161.Google Scholar
Skolem, Th., Peano axioms and models of arithmetic. Mathematical Interpretations of Formal Systems (Skolem, Th., Hasenjaeger, G., Kreisel, G., Robinson, A., Wang, Hao, Henkin, L., and Łoś, J., editors), North–Holland Publishing Company, Amsterdam, 1955, pp. 114.Google Scholar
Slaman, Theodore A., The density of infima in the recursively enumerable degrees. Annals of Pure and Applied Logic, vol. 52 (1991), no. 1–2, pp. 125.CrossRefGoogle Scholar
Slaman, Theodore A., Σ1-bounding and ${\rm{\Delta }}_n $ -induction. Proceedings of the American Mathematical Society, vol. 132 (2004), no. 8, pp. 2449–2456.
Slaman, Theodore A. and Hugh Woodin, W., Σ1-collection and the finite injury method. Mathematical Logic and Applications (Juichi Shinoda, Theodore A. Slaman, and T. Tugué, editors), Springer–Verlag, Heidelberg, 1989, pp. 178–188.
Yang, Yue, Σ2induction and cuppable degrees. Recursion Theory and Complexity: Proceedings of the Kazan ’97 Workshop (Kazan, Russia) (Marat M. Arslanov and Steffen Lempp, editors), de Gruyter, Berlin, 1999, pp. 215–228.

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 26 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 27th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

NONSTANDARD MODELS IN RECURSION THEORY AND REVERSE MATHEMATICS
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

NONSTANDARD MODELS IN RECURSION THEORY AND REVERSE MATHEMATICS
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

NONSTANDARD MODELS IN RECURSION THEORY AND REVERSE MATHEMATICS
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *