Skip to main content
×
Home
    • Aa
    • Aa

The Absolute Arithmetic Continuum and the Unification Of all Numbers Great and Small

  • Philip Ehrlich (a1)
Abstract
Abstract

In his monograph On Numbers and Games, J. H. Conway introduced a real-closed field containing the reals and the ordinals as well as a great many less familiar numbers including −ω, ω/2, 1/ω, and ω − π to name only a few. Indeed, this particular real-closed field, which Conway calls No, is so remarkably inclusive that, subject to the proviso that numbers—construed here as members of ordered fields—be individually definable in terms of sets of NBG (von Neumann–Bernays–Gödel set theory with global choice), it may be said to contain “All Numbers Great and Small.” In this respect, No bears much the same relation to ordered fields that the system ℝ of real numbers bears to Archimedean ordered fields.

In Part I of the present paper, we suggest that whereas ℝ should merely be regarded as constituting an arithmetic continuum (modulo the Archimedean axiom), No may be regarded as a sort of absolute arithmetic continuum (modulo NBG), and in Part II we draw attention to the unifying framework No provides not only for the reals and the ordinals but also for an array of non-Archimedean ordered number systems that have arisen in connection with the theories of non-Archimedean ordered algebraic and geometric systems, the theory of the rate of growth of real functions and nonstandard analysis.

In addition to its inclusive structure as an ordered field, the system No of surreal numbers has a rich algebraico-tree-theoretic structure—a simplicity hierarchical structure—that emerges from the recursive clauses in terms of which it is defined. In the development of No outlined in the present paper, in which the surreals emerge vis-à-vis a generalization of the von Neumann ordinal construction, the simplicity hierarchical features of No are brought to the fore and play central roles in the aforementioned unification of systems of numbers great and small and in some of the more revealing characterizations of No as an absolute continuum.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

Wilhelm Ackermann [1956], Zur Axiomatik der Mengenlehre, Mathematische Annalen, vol. 131, pp. 336345.

Norman Alling [1962], On the existence of real-closedfields that are ηα-sets of power ℵα, Transactions of the American Mathematical Society, vol. 103, pp. 341352.

Norman Alling [1985], Conway's field of surreal numbers, Transactions of the American Mathematical Society, vol. 287, pp. 365386.

Norman Alling [1987], Foundations of analysis over surreal number fields, North-Holland Publishing Company, Amsterdam.

Emil Artin and Otto Schreier [1926], Algebraische Konstruktion reeller Körper, Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Univeristät, vol. 5, pp. 8599, reprinted in Serge Lang and John T. Tate (editors), The Collected Papers of Emil Artin, Addison-Wesley Publishing Company, Reeding, MA, 1965, pp. 258–272.

Matthias Aschenbrenner and Lou van den Dries [2000], Closed asymptotic couples, Journal of Algebra, vol. 225, pp. 309358.

Michael Boshernitzan [1981], An extension of Hardy's class L of “orders of infinity”, Journal d'Analyse Mathématique, vol. 39, pp. 235255.

Philip Carruth [1942], Arithmetic of ordinals with applications to the theory of ordered Abelian groups, Bulletin of the American Mathematical Society, vol. 48, pp. 262271.

C. C. Chang and H. J. Keisler [1990], Model theory, third ed., North-Holland Publishing Company, Amsterdam.

A. H. Clifford [1954], Note on Hahn's theorem on ordered Abelian groups, Proceedings of the American Mathematical Society, vol. 5, pp. 860863.

Paul Conrad [1954], On ordered division rings, Proceedings of the American Mathematical Society, vol. 5, pp. 323328.

Paul Conrad and John Dauns [1969], An embedding theorem for lattice-ordered fields, Pacific Journal of Mathematics, vol. 30, pp. 385397.

Paul Du Bois-Reymond [18701871], Sur la grandeur relative des infinis des functions, Annali di matematica pura ed applicata, vol. 4, pp. 338353.

Paul Du Bois-Reymond [1875], Ueber asymptotische Werthe, infinitäre Approximationen und infinitäre Auflösung von Gleichungen, Mathematische Annalen, vol. 8, pp. 363414; (Nachträge zur Abhandlung: ueber asymptotische Werthe etc., pp. 574–576).

Paul Du Bois-Reymond [1877], Ueber die Paradoxen des Infinitärcalcüls, Mathematische Annalen, vol. 11, pp. 149167.

Philip Ehrlich [1988], An alternative construction of Conway's ordered field No, Algebra Universalis, vol. 25, pp. 7–16, Errata, vol. 25 (1988), p. 233.

Philip Ehrlich (editor) [1994], Real numbers, generalizations of the reals, and theories of continua, Kluwer Academic Publishers, Dordrecht, Netherlands.

Philip Ehrlich [1994a], All number great and small, Real numbers, generalizations of the reals, and theories of continua ( Philip Ehrlich , editor), Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 239258.

Philip Ehrlich [1995], Hahn's Über die nichtarchimedischen Grössensysteme and the development of the modern theory of magnitudes and numbers to measure them, From Dedekind to Gödel: Essays on the development of the foundations of mathematics ( Jaakko Hintikka , editor), Kluwer Academic Publishers, Dordrecht, Netherlands.

Philip Ehrlich [1997], Dedekind cuts of Archimedean complete ordered Abelian groups, Algebra Universalis, vol. 37, pp. 223234.

Philip Ehrlich [2001], Number systems with simplicity hierarchies: A generalization of Conway's theory of surreal numbers, The Journal of Symbolic Logic, vol. 66, no. 3, pp. 12311258, Corrigendum, vol. 70 (2005), no. 3, p. 1022.

Philip Ehrlich [2006], The rise of non-Archimedean mathematics and the roots of a misconception I: the emergence ofnon-Archimedean systems of magnitudes, Archive for History of Exact Sciences, vol. 60, pp. 1121.

Paul Erdös , Leonard Gillman , and Melvin Henriksen [1955], An isomorphism theorem for real-closed fields, Annals of Mathematics. Series 2, vol. 61, pp. 542554.

Jean Esterle [1977], Solution d'un problème d'Erdös, Gillman et Henriksen et application à l'étude des homomorphismes de C(K), Acta Mathematica Academiae Scientiarum Hungaricae, vol. 30, pp. 113127.

Gordon Fisher [1981], The infinite and infinitesimal quantities of du Bois-Reymond and their reception, Archive for History of Exact Sciences, vol. 24, pp. 101164.

Antongiulio Fornasiero [2006], Embedding Henselian fields into power series, Journal of Algebra, vol. 304, pp. 112156.

Harry Gonshor [1986], An introduction to the theory of surreal numbers, Cambridge University Press, Cambridge.

Edwin Hewitt [1948], Rings of real-valued continuous functions. I, Transactions of the American Mathematical Society, vol. 64, pp. 4599.

Irving Kaplansky [1942], Maximal fields with valuations, Duke Mathematical Journal, vol. 9, pp. 303321.

H. Jerome Keisler [1963], Limit ultrapowers, Transactions of the American Mathematical Society, vol. 107, pp. 383408.

H. Jerome Keisler [1994], The hyperreal line, Real numbers, generalizations of the reals, and theories of continua ( Philip Ehrlich , editor), Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 207237.

Dieter Klaua [1994], Rational and real ordinal numbers, Real numbers, generalizations of the reals, and theories of continua ( Philip Ehrlich , editor), Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 259276.

Azriel Lévy and Robert Vaught [1961], Principles of partial reflection in the set theories of Zermelo and Ackermann, Pacific Journal of Mathematics, vol. 11, pp. 10451062.

Alexander Ostrowski [1935], Untersuchungen zur arithmetischen Theorie der Körper, Mathematische Zeitschrift, vol. 39, pp. 269404.

Sibylla Priess-Crampe [1973], Zum Hahnschen Einbettungssatz für Angeordnete Körper, Archiv der Mathematik, vol. 24, pp. 607614.

William Reinhardt [1970], Ackermann's set theory equals ZF, Annals of Mathematical Logic, vol. 2, pp. 189259.

Maxwell Rosenlicht [1983], Hardy fields, Journal of Mathematical Analysis and Applications, vol. 93, pp. 297311.

Curt Schmieden and Detlef Laugwitz [1958], Eine Erweiterung der Infinitesimalrechnung, Mathematische Zeitschrift, vol. 69, pp. 139.

Gunnar Sjödin [1971], Hardy-fields, Arkiv für Matematik, vol. 8, pp. 217237.

Otto Stolz [1879], Ueber die Grenzwerthe der Quotienten, Mathematische Annalen, vol. 14, pp. 231240.

Otto Stolz [1883], Zur Geometrie der Alten, insbesondere über ein Axiom des Archimedes, Mathematische Annalen, vol. 22, pp. 504519.

Lou van den Dries and Philip Ehrlich [2001], Fields of surreal numbers and exponentiation, Fundamenta Mathematicae, vol. 167, no. 2, pp. 173188; erratum, Lou van den Dries and Philip Ehrlich [2001], Fields of surreal numbers and exponentiation, Fundamenta Mathematicae, vol. 168 (2001), no. 2, pp. 295–297.

Lou van den Dries , Angus Macintyre , and David Marker [1994], The elementary theory of restricted analytic fields with exponentiation, Annals of Mathematics, vol. 140, pp. 183205.

Lou van den Dries , Angus Macintyre , and David Marker [1997], Logarithmic-exponential power series, Journal of the London Mathematical Society. Second Series, vol. 56, pp. 417434.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Symbolic Logic
  • ISSN: 1079-8986
  • EISSN: 1943-5894
  • URL: /core/journals/bulletin-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 8 *
Loading metrics...

Abstract views

Total abstract views: 117 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd September 2017. This data will be updated every 24 hours.