Skip to main content
×
×
Home

Alan Turing and the Foundations of Computable Analysis

  • Guido Gherardi (a1)
Abstract

We investigate Turing's contributions to computability theory for real numbers and real functions presented in [22, 24, 26]. In particular, it is shown how two fundamental approaches to computable analysis, the so-called ‘Type-2 Theory of Effectivity’ (TTE) and the ‘realRAM machine’ model, have their foundations in Turing's work, in spite of the two incompatible notions of computability they involve. It is also shown, by contrast, how the modern conceptual tools provided by these two paradigms allow a systematic interpretation of Turing's pioneering work in the subject.

Copyright
References
Hide All
[1] Blum, Leonore, Computing over the reals: where Turing meets Newton, Notices of the American Mathematical Society, vol. 51 (2004), no. 9, pp. 10241034.
[2] Blum, Leonore, Cucker, Felipe, Schub, Michael, and Smale, Stephen, Complexity and real computation, Springer, New York, 1998.
[3] Brouwer, Luitzen E. J., Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Erster Teil: allgemeine Mengenlehre, Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, vol. 1 sectie 12 (1918), no. 5, pp. 343.
[4] Brouwer, Luitzen E. J., Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Zweiter Teil: Theorie der Punktmengen, Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, vol. 1 sectie 12 (1919), no. 7, pp. 333.
[5] Brouwer, Luitzen E. J., Über die Bedeutung des Satzes vom ausgeschlossenen Dritten in der Mathematik, insbesondere in der Funktiontheorie, Journal fur die reine und angewandte Mathematik, vol. 154 (1924), pp. 17.
[6] Chaitin, Gregory, Meta math! The quest for Omega, Vintage Books, 2006.
[7] Cucker, Felipe, Real computations with fake numbers, Journal of Complexity, vol. 18 (2002), pp. 104134.
[8] Davis, Martin, Computability and unsolvability, McGraw-Hill, 1958.
[9] Grzegorczick, Andrzej, Computable functionals, Fundamenta Mathematicae, vol. 42 (1955), pp. 168202.
[10] Grzegorczick, Andrzej, On the definitions of computable real continuous functions, Fundamenta Mathematicae, vol. 44 (1957), pp. 6171.
[11] Kleene, Stephen C., Introduction to metamathematics, North-Holland Publishing Company, Amsterdam, 1952.
[12] Kleene, Stephen C. and Vesley, Richard E., Intuitionistic mathematics especially in relation to recursive functions, North-Holland Publishing Company, Amsterdam, 1965.
[13] Kreitz, Christoph and Weihrauch, K., Theory of representations, Theoretical Computer Science, vol. 38 (1985), pp. 3553.
[14] Lacombe, Daniel, Extension de la notion de fonction récursive aux fonctions d'une ou plusieurs variables réelles III, Comptes Rendus Académie des Sciences Paris, vol. 241 (1955), pp. 151153.
[15] Mazur, Stanislav, Computational analysis, Razprawy Matematyczne, Warsaw, 1963.
[16] Miller, Joseph S., Degrees of unsolvability of continuous functions, The Journal of Symbolic Logic, vol. 69 (2004), no. 2, pp. 555584.
[17] Odifreddi, Piergiorgio, Classical recursion theory, North-Holland Publishing Company, Amsterdam, 1989.
[18] Petzold, Charles, The annotated Turing, Wiley Publishing, Indianapolis, 2008.
[19] Post, Emil L., Recursive unsolvability of a problem of Thue, The Journal of Symbolic Logic, vol. 12 (1947), pp. 503513.
[20] Rogers, Hartley, Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967.
[21] Soare, Robert I., Recursively enumerable sets and degrees, Springer, Berlin, 1987.
[22] Turing, Alan M., On computable numbers, with an application to the ‘Entscheidungsproblem’, Proceedings of the London Mathematical Society, vol. 42 (1936), no. 2, pp. 230265.
[23] Turing, Alan M., Computability and λ-definability, The Journal of Symbolic Logic, vol. 2 (1937), no. 4, pp. 153163.
[24] Turing, Alan M., On computable numbers, with an application to the ‘Entscheidungsproblem’. A correction, Proceedings of the London Mathematical Society, vol. 43 (1937), no. 2, pp. 544546.
[25] Turing, Alan M., A method for the calculation of the Zeta-function, Proceedings of the London Mathematical Society, vol. 48 (1943), no. 2, pp. 180197.
[26] Turing, Alan M., Rounding-off errors in matrix processes, The Quarterly Journal of Mechanics and Applied Mathematics, vol. 1 (1948), no. 1, pp. 287308.
[27] Turing, Alan M., Some calculations of the Riemann Zeta-function, Proceedings of the London Mathematical Society, vol. 3 (1953), no. 3, pp. 99117.
[28] Weihrauch, Klaus, Computable analysis, Springer, Berlin, 2000.
[29] Ziegler, Martin, Revising type–2 computation and degrees of discontinuity, Electronic Notes in Theoretical Computer Science, vol. 167 (2007), pp. 255274.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Symbolic Logic
  • ISSN: 1079-8986
  • EISSN: 1943-5894
  • URL: /core/journals/bulletin-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×