[1] Abiteboul, S., Hull, R., and Vianu, V., Foundations of databases, Addison-Wesley, 1995.

[2] Abiteboul, S. and Vianu, V., Fixpoint extensions of first-order logic and Datalog-like languages, Proceedings of the 4th IEEE symposium on logic in computer science, 1989, pp. 71–79.

[3] Babai, L., Erdős, P., and Selkow, S. M., Random graph isomorphism, SIAM Journal on Computing, vol. 9 (1980), pp. 628–635.

[4] Cai, J., Fürer, M., and Immerman, N., An optimal lower bound on the number of variables for graph identification, Combinatorica, vol. 12 (1992), no. 4, pp. 389–410.

[5] Chandra, A. and Harel, D., Structure and complexity of relational queries, Journal of Computer and System Sciences, vol. 25 (1982), pp. 99–128.

[6] Dawar, A., Lindell, S., and Weinstein, S., Infinitary logic and inductive definability over finite structures, Information and Control, vol. 119 (1995), no. 2, pp. 160–175.

[7] Erdős, P. and Rényi, A., On the evolution of random graphs, Publications of the Mathematical Institute of the Hungarian Academy of Sciences, vol. 7 (1960), pp. 17–61.

[8] Fagin, R., Generalized first-order spectra and polynomial-time recognizable sets, Complexity of computation (Karp, R.M., editor), SIAM-AMS Proceedings, vol. 7, 1974, pp. 43–73.

[9] Fagin, R., Monadic generalized spectra, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 21 (1975), pp. 89–96.

[10] Fagin, R., Probabilities on finite models, The Journal of Symbolic Logic, vol. 41 (1976), pp. 50–58.

[11] Glebskii, Y. V., Kogan, D. I., Liogonki, M. I., and Talanov, V A., Range and degree of realizability of formulas in the restricted predicate calculus, Cybernetics, vol. 5 (1969), pp. 142–154.

[12] Grumbach, S., A paradox in database theory, 3rd ERCIM database research group workshop on updates and constraints handling in advanced database systems, ERCIM-94-W004 CNR, 1992, pp. 130–143.

[13] Gurevich, Y., Toward logic tailored for computational complexity, Computation and proof theory (Ricther, M. M.
et al., editors), Lecture Notes in Mathematics, no. 1104, Springer-Verlag, 1984, pp. 175–216.

[14] Gurevich, Y., Logic and the challenge of computer science, Current trends in theoretical computer science (Börger, E., editor), Computer Science Press, 1988, pp. 1–57.

[15] Gurevich, Y. and Shelah, S., Fixed-point extensions offirst-order logic, Annals of Pure and Applied Logic, vol. 32 (1986), pp. 265–280.

[16] Hella, L., Kolaitis, Ph. G., and Luosto., K., How to define a linear order on finite models, Proceedings ofthe 9th IEEE symposium on logic in computer science, 1994, pp. 40–49.

[17] Hella, L., Luosto, K., and Väänänen, J., The hierarchy theorem for generalized quantifiers, to appear in the The Journal of Symbolic Logic, 1995.

[18] Immerman, N., Relational queries computable in polynomial time, Information and Control, vol. 68 (1986), pp. 86–104.

[19] Immerman, N., Languages that capture complexity classes, SIAM Journal of Computing, vol. 16 (1987), pp. 760–778.

[20] Immerman, N. and Kozen, D., Definability with bounded number of bound variables, Information and Computation, vol. 83 (1989), pp. 121–139.

[21] Karp, R., Probabilistic analysis of a canonical algorithm for graphs, Proceedings of Symposia in Pure Mathematics, no. 34, American Mathematical Society, 1979.

[22] Kaufmann, M. and Shelah, S., On random models of finite power and monadic logic, Discrete Mathematics, vol. 54 (1985), pp. 285–293.

[23] Kolaitis, Ph. G., Implicit definability on finite structures and unambiguous computations, Proceedings of the 5th IEEE symposium on logic in computer science, 1990, pp. 168–180.

[24] Kolaitis, Ph. G. and Väänànen, J. K., Generalized quantifiers and pebble games on finite structures, Annals of Pure and Applied Logic, vol. 74 (1995), no. 1, pp. 23–75.

[25] Kolaitis, Ph. G. and Vardi, M. Y.,
*Infinitary logic and* 0-1 *laws*
, Information and Computation, vol. 98 (1992), pp. 258–294, special issue: selections from the fifth annual IEEE symposium on logic in computer science.

[26] Lindström, P., First order predicate logic with generalized quantifiers, Theoria, vol. 32 (1966), pp. 186–195.

[27] Lynch, J., Infinitary logics and very sparse random graphs, Proceedings of the 8th IEEE symposium on logic in computer science, 1993, pp. 191–198.

[28] Lynch, J. and Tyszkiewicz, J., The infinitary logic of sparse random graphs, Proceedings of the 10th IEEE symposium on logic in computer science, 1995, pp. 46–53.

[29] McArthur, M.,
*Convergence and* 0-1 *laws for under arbitrary measures*
, Computer science logic (Pacholski, L. and Tiuryn, J., editors), Springer-Verlag, 1995, CSL '94, pp. 228–241.
[30] Mostowski, A., On a generalization of quantifiers, Fundamenda Mathematicae, vol. 44 (1957), pp. 12–36.

[31] Shelah, S. and Spencer, J., Zero-one laws for sparse random graphs, Journal of the American Mathematical Society, vol. 1 (1988), pp. 97–115.

[32] Vardi, M. Y., The complexity of relational query languages, Proceedings of the 14th ACM symposium on theory of computing, 1982, pp. 137–146.