[1]
Bernays, P., Zur Frage der Unendlichkeitsschemata in der axiomatischen Mengenlehre, Essays on the foundations of mathematics (Bar-Hillel, Y., Poznanski, E. I. J., Rabin, M.O., and Robinson, A., editors), Magnes Press, Jerusalem, 1961, pp. 3–49.

[2]
Blass, A., Exact functors and measurable cardinals, Pacific Journal of Mathematics, vol. 63 (1976), no. 2, pp. 335–346.

[3]
Corazza, P., Laver sequences for extendible and super-almost-huge cardinals, The Journal of Symbolic Logic, vol. 64 (1999), pp. 963–983.

[4]
Corazza, P., The wholeness axiom and laver sequences, Annals of Pure and Applied Logic, vol. 105 (2000), pp. 157–260.

[5]
Corazza, P., Consistency of V = HOD with the wholeness axiom, Archive for Mathematical Logic, vol. 39 (2000), pp. 219–226.

[6]
Corazza, P., The gap between I_{3} and the wholeness axiom, Fundamenta Mathematicae, vol. 179 (2003), pp. 43–60.

[7]
Corazza, P., The spectrum of elementary embeddings j: V → V, Annals of Pure And Applied Logic, vol. 139 (2006), pp. 327–399.

[8]
Corazza, P., The wholeness axiom, Consciousness-based education: A foundation for teaching and learning in the academic disciplines (Corazza, P., editor), Consciousness-Based Education and Mathematics, vol. 5, MUM Press, 2009, revised and updated from 1994 original manuscript.

[9]
Corazza, P., Indestructibility of wholeness, in preparation.

[11]
Eklof, P. C. and Mekler, A. H., Almost-free modules, set-theoretic methods, North Holland Mathematical Library, vol. 46, Elsevier Science Publishers B. V., Amsterdam, 1990.

[12]
Feferman, S., Friedman, H., Maddy, P., and Steel, J., Does mathematics need new axioms?, this Bulletin, vol. 6 (2000), no. 4, pp. 401–433.

[13]
Freyd, P., Aspects of topoi, Bulletin of the Australian Mathematical Society, vol. 7 (1972), pp. 1–76.

[14]
Gitik, M. and Shelah, S., On certain indestructibility of strong cardinals and a question of Hajnal, Archives of Mathematical Logic, vol. 28 (1989), pp. 35–42.

[15]
Hallett, M., Cantorian set theory and the limitation of size, Clarendon Press, Oxford, 1988.

[16]
Hamkins, J. D., Canonical seeds and Prikry trees, The Journal of Symbolic Logic, vol. 62 (1997), no. 2, pp. 373–396.

[17]
Hamkins, J. D., The wholeness axioms and V = HOD, Archive for Mathematical Logic, vol. 40 (2001), pp. 1–8.

[18]
Hausdorff, F., Grundzüge einer Theorie der geordneten Mengen, Mathematische Annalen, vol. 65 (1908), pp. 435–505.

[19]
Jech, T., Set theory, Springer-Verlag, Berlin, 2003.

[20]
Kanamori, A., The higher infinite, Springer-Verlag, Berlin, 1994.

[21]
Kanamori, A.,, Gödel and set theory, this Bulletin, vol. 13 (2007), no. 2, pp. 153–188.

[22]
Kunen, K., Elementary embeddings and infinitary combinatorics, The Journal of Symbolic Logic, vol. 36 (1971), pp. 407–413.

[23]
Kunen, K., Saturated ideals, The Journal of Symbolic Logic, (1978), pp. 65–76.

[24]
Laver, R., Making the supercompactness of k indestructible under k-directed closed forcing, Israel Journal of Mathematics, vol. 29 (1978), no. 4, pp. 385–388.

[25]
Lawvere, F. W., Adjointness in foundations, Dialectica, vol. 23 (1969), pp. 281–296.

[26]
Lane, S. Mac, Categories for the working mathematician, Springer-Verlag, New York, 1971.

[27]
Maddy, P., Believing the axioms, I, The Journal of Symbolic Logic, vol. 53 (1988), no. 2, pp. 481–511.

[28]
Maddy, P., Believing the axioms, II, The Journal of Symbolic Logic, vol. 53 (1988), no. 3, pp. 736–764.

[29]
Mahlo, P., Über lineare transfinite Mengen, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematische–Physische Klasse, vol. 63 (1911), pp. 187–225.

[30]
Martin, D. A., Infinite games, Proceedings of the International Congress of Mathematicians, Helsinki, (1978) (Lehto, Olli, editor), vol. 1, Academia Scientiarum Fennica, Helsinki, 1980, pp. 269–273.

[31]
Reinhardt, W. N., Remarks on reflection principles, large cardinals, and elementary embeddings, Axiomatic set theory (Jech, T. J., editor), American Mathematical Society, Providence, Rhode Island, 1974, (Part 2), pp. 189–205.

[32]
Trnková, V., On descriptive classification of set-functors II, Commentationes Mathematicai Universitatis Carolinae, vol. 2 (1971), pp. 345–357.