Skip to main content
×
×
Home

Calibrating Randomness

  • Rod Downey (a1), Denis R. Hirschfeldt (a2), André Nies (a3) and Sebastiaan A. Terwijn (a4)
Extract

We report on some recent work centered on attempts to understand when one set is more random than another. We look at various methods of calibration by initial segment complexity, such as those introduced by Solovay [125], Downey, Hirschfeldt, and Nies [39], Downey, Hirschfeldt, and LaForte [36], and Downey [31]; as well as other methods such as lowness notions of Kučera and Terwijn [71], Terwijn and Zambella [133], Nies [101, 100], and Downey, Griffiths, and Reid [34]; higher level randomness notions going back to the work of Kurtz [73], Kautz [61], and Solovay [125]; and other calibrations of randomness based on definitions along the lines of Schnorr [117].

These notions have complex interrelationships, and connections to classical notions from computability theory such as relative computability and enumerability. Computability figures in obvious ways in definitions of effective randomness, but there are also applications of notions related to randomness in computability theory. For instance, an exciting by-product of the program we describe is a more-or-less natural requirement-free solution to Post's Problem, much along the lines of the Dekker deficiency set.

Copyright
References
Hide All
[1] Ambos-Spies, K. and Kučera, A., Randomness in computability theory, Computability Theory and its Applications (Boulder, CO, 1999) (Cholak, P. A., Lempp, S., Lerman, M., and Shore, R. A., editors), Contemporary Mathematics, vol. 257, American Mathematical Society, 2000, pp. 114.
[2] Ambos-Spies, K., Merkle, W., Reimann, J., and Stephan, F., Hausdorff dimension in exponential time, Computational Complexity, 2001, IEEE Computer Society, 2001, pp. 210217.
[3] Antunes, L. and Fortnow, L., Sophistication revisited, Automata, Languages and Programming, 30th International Colloquium, ICALP 2003, Eindhoven, The Netherlands, June 30–July 4, 2003 (Baeten, J. C. M., Lenstra, J. K., Parrow, J., and Woeginger, G. J., editors), Lecture Notes in Computer Science, vol. 2719, Springer-Verlag, 2003, pp. 267277.
[4] Athreya, K. B., Hitchcock, J. M., Lutz, J. H., and Mayordomo, E., Effective strong dimension in algorithmic information and computational complexity, SIAM Journal on Computing, to appear, extended abstract in Proceedings of the Twenty-First Symposiumon Theoretical Aspects of Computer Science (Montpellier, France, March 25–27, 2004) , Springer-Verlag, 2004, pp. 632643.
[5] Barmpalias, G., Computably enumerable sets in the Solovay and the strong weak truth table degrees, New Computational Paradigms: First Conference on Computability in Europe, CiE 2005, Amsterdam,The Netherlands, June 8–12, 2005 (Cooper, S. B., Löwe, B., and Torenvliet, L., editors), Lecture Notes in Computer Science, vol. 3526, Springer-Verlag, 2005, pp. 817.
[6] Barmpalias, G. and Lewis, A. E. M., A c.e. real that cannot be sw-computed by any Ω number, Notre Dame Journal of Formal Logic, to appear.
[7] Barzdins, J. M., Complexity of programs to determine whether natural numbers not greater than n belong to a recursively enumerable set, Soviet Mathematics – Doklady, vol. 9 (1968), pp. 12511254.
[8] Becher, V. and Chaitin, G., Another example of higher order randomness, Fundamenta Informaticae, vol. 51 (2002), pp. 325338.
[9] Becher, V., Daicz, S., and Chaitin, G., A highly random number, Combinatorics, Computability and Logic (Constanţa, 2001) (Calude, C. S., Dinneen, M. J., and Sburlan, S., editors), Discrete Mathematics and Theoretical Computer Science, Springer-Verlag, 2001, pp. 5568.
[10] Becher, V. and Grigorieff, S., Random reals and possibly infinite computations part I: randomness in ∅′, The Journal of Symbolic Logic, vol. 70 (2005), pp. 891913.
[11] Bedregal, B. R. C. and Nies, A., Lowness properties of reals and hyper-immunity, WoLLIC 2003, Electronic Notes in Theoretical Computer Science, vol. 84, Elsevier, 2003, http://www1.elsevier.com/gej-ng/31/29/23/142/23/show/Products/notes/index.htt#001.
[12] Beigel, R., Buhrman, H., Fejer, P., Fortnow, L., Grabowski, P., Longpré, L., Muchnik, A., Stephan, F., and Torenvliet, L., Enumerations of the Kolmogorov function, Electronic Colloquium on Computational Complexity, TR04-015, 2004, http://eccc.uni-trier.de/eccc-reports/2004/TR04-015/.
[13] Cai, J.-Y. and Hartmanis, J., On Hausdorff and topological dimensions of the Kolmogorov complexity of the real line, Journal of Computer and System Sciences, vol. 49 (1994), pp. 605619.
[14] Calude, C. S., Information and randomness, an algorithmic perspective, Springer-Verlag, 1994, second edition, 2002.
[15] Calude, C. S. and Coles, R. J., Program-size complexity of initial segments and domination reducibility, Jewels are forever (Karhumäki, J., Maurer, H., Păun, G., and Rozenberg, G., editors), Springer-Verlag, 1999, pp. 225237.
[16] Calude, C. S., Coles, R., Hertling, P. H., and Khoussainov, B., Degree-theoretic aspects of computably enumerable reals, Models and computability (Cooper, S. B. and Truss, J. K., editors), London Mathematical Society Lecture Note Series, vol. 259, Cambridge University Press, 1999, pp. 2339.
[17] Calude, C. S., Hertling, P.H., Khoussainov, B., and Wang, Y., Recursively enumerable reals and Chaitin Ω numbers, Theoretical Computer Science, vol. 255 (2001), pp. 125149, extended abstract in STACS 98 , Lecture Notes in Computer Science, 1373, Springer-Verlag, Berlin, 1998, pp. 596–606.
[18] Calude, C. S. and Nies, A., Chaitin Ω numbers and strong reducibilities, Journal of Universal Computer Science, vol. 3 (1998), pp. 11621166.
[19] Calude, C. S., Staiger, L., and Terwijn, S. A., On partial randomness, Annals of Pure and Applied Logic, vol. 138 (2006), no. 1–3, pp. 2030.
[20] Chaitin, G. J., Atheory of program size formally identical to information theory, Journal of the ACM, vol. 22 (1975), pp. 329340.
[21] Chaitin, G. J., Algorithmic information theory, IBM Journal of Research and Development, vol. 21 (1977), pp. 350–359, 496.
[22] Chaitin, G. J., Algorithmic information theory, Cambridge University Press, 1987.
[23] Chaitin, G. J., Incompleteness theorems for random reals, Advances in Applied Mathematics, vol. 8 (1987), pp. 119146.
[24] Chernov, A. V., Muchnik, An. A., Romashchenko, A. E., Shen, A., and Vereshchagin, N. K., Upper semi-lattice of binary strings with the relation “x is simple conditional to y”, Theoretical Computer Science, vol. 271 (2002), pp. 6995.
[25] Cholak, P., Coles, R., Downey, R., and Herrmann, E., Automorphisms of the lattice of classes: perfect thin classes and a.n.c. degrees, Transactions of the American Mathematical Society, vol. 353 (2001), pp. 48994924.
[26] Csima, B. F., Applications of computability theory to prime models and differential geometry, Ph.D. Dissertation, The University of Chicago, 2003.
[27] Csima, B. F. and Montalbán, A., A minimal pair of K-degrees, Proceedings of the American Mathematical Society, vol. 134 (2006), pp. 14991502.
[28] Davie, G., Characterising the Martin-Löf random sequences using computably enumerable sets of measure one, Information Processing Letters, vol. 92 (2004), pp. 157160.
[29] de Leeuw, K., Moore, E. F., Shannon, C. F., and Shapiro, N., Computability by probabilistic machines, Automata studies, Annals of Mathematics Studies, vol. 34, Princeton University Press, 1956, pp. 183212.
[30] Demuth, O., Remarks on the structure of tt-degrees based on constructive measure theory, Commentationes Mathematicae Universitatis Carolinae, vol. 29 (1988), pp. 233247.
[31] Downey, R., Some computability-theoretic aspects of reals and randomness, The Notre Dame Lectures (Cholak, P., editor), Lecture Notes in Logic, vol. 18, Association for Symbolic Logic, 2005, pp. 97148.
[32] Downey, R. and Griffiths, E., Schnorr randomness, The Journal of Symbolic Logic, vol. 69 (2004), pp. 533554.
[33] Downey, R., Griffiths, E., and LaForte, G., On Schnorr and computable randomness, martingales, and machines, Mathematical Logic Quarterly, vol. 50 (2004), pp. 613627.
[34] Downey, R., Griffiths, E., and Reid, S., On Kurtz randomness, Theoretical Computer Science, vol. 321 (2004), pp. 249270.
[35] Downey, R. and Hirschfeldt, D. R., Algorithmic randomness and complexity, Springer-Verlag, to appear.
[36] Downey, R., Hirschfeldt, D. R., and LaForte, G., Randomness and reducibility, Journal of Computer and System Sciences, vol. 68 (2004), pp. 96114, extended abstract in Mathematical Foundations of Computer Science 2001 (J. Sgall, A. Pultr, and P. Kolman, editors), Lecture Notes in Computer Science, 2136, Springer-Verlag, 2001, pp. 316–327.
[37] Downey, R., Hirschfeldt, D. R., and LaForte, G., Undecidability of the structure of the Solovay degrees of c.e. reals, to appear.
[38] Downey, R., Hirschfeldt, D. R., Miller, J. S., and Nies, A., Relativizing Chaitin's halting probability, Journal of Mathematical Logic, vol. 5 (2005), pp. 167192.
[39] Downey, R., Hirschfeldt, D.R., and Nies, A., Randomness, computability, and density, SIAM Journal on Computing, vol. 31 (2002), pp. 11691183, extended abstract in STACS 2001 Proceedings (A. Ferreira and H. Reichel, editors), Lecture Notes in Computer Science, vol. 2010, Springer-Verlag, 2001, pp. 195–201.
[40] Downey, R., Hirschfeldt, D. R., Nies, A., and Stephan, F., Trivial reals, Proceedings of the 7th and 8th Asian Logic Conferences (Downey, R., Decheng, D., Ping, T. S., Hui, Q.Y., and Yasugi, M., editors), Singapore University Press and World Scientific, 2003, extended abstract in Electronic Notes in Theoretical Computer Science , vol. 66 (2002), no. 1, pp. 103–131.
[41] Downey, R., Jockusch, C., and Stob, M., Array nonrecursive sets and multiple permitting arguments, Recursion Theory Week (Oberwolfach, 1989) (Ambos-Spies, K., Müller, G. H., and Sacks, G. E., editors), Lecture Notes in Mathematics, vol. 1432, Springer-Verlag, 1990, pp. 141174.
[42] Downey, R., Jockusch, C., and Stob, M., Array nonrecursive degrees and genericity, Computability, enumerability, unsolvability (Cooper, S. B., Slaman, T. A., and Wainer, S. S., editors), London Mathematical Society Lecture Notes Series, vol. 224, Cambridge University Press, 1996, pp. 93104.
[43] Downey, R. and Miller, J. S., A basis theorem for classes of positive measure and jump inversion for random reals, Proceedings of the American Mathematical Society, vol. 134 (2006), pp. 283288.
[44] Downey, R., Miller, J. S., and Reimann, J., Finite randomness, in preparation.
[45] Falconer, K., Fractal Geometry. Mathematical Foundations and Applications, Wiley & Sons, 1990.
[46] Gács, P., On the symmetry of algorithmic information, Soviet Mathematics – Doklady, vol. 15 (1974), pp. 14771480.
[47] Gács, P., Every sequence is reducible to a random one, Information and Control, vol. 70 (1986), pp. 186192.
[48] Gaifman, H. and Snir, M., Probabilities over rich languages, The Journal of Symbolic Logic, vol. 47 (1982), pp. 495548.
[49] Hausdorff, F., Dimension und äuβeres Maβ, Mathematische Annalen, vol. 79 (1919), pp. 157179.
[50] Hirschfeldt, D.R., Nies, A., and Stephan, F., Using random sets as oracles, to appear.
[51] Hitchcock, J. M., Lutz, J. H., and Terwijn, S. A., The arithmetical complexity of dimension and randomness, ACM Transactions on Computational Logic, in press.
[52] Hjorth, G. and Nies, A., Randomness in effective descriptive set theory, to appear.
[53] Ishmukhametov, S., Weak recursive degrees and a problem of Spector, Recursion theory and complexity (Arslanov, M. and Lempp, S., editors), de Gruyter, Berlin, 1999, pp. 8188.
[54] Jockusch, C. G. Jr., The degrees of bi-immune sets, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 15 (1969), pp. 135140.
[55] Jockusch, C. G. Jr., Three easy constructions of recursively enumerable sets, Logic Year 1979–80 (Proceedings of Seminars and Conferences in Mathematical Logic, University of Connecticut, Storrs, Conn., 1979/80) (Lerman, M., Schmerl, J. H., and Soare, R. I., editors), Lecture Notes in Mathematics, vol. 859, Springer-Verlag, 1981, pp. 8391.
[56] Jockusch, C. G., Jr., Lerman, M., Soare, R. I., and Solovay, R., Recursively enumerable sets modulo iterated jumps and extensions of Arslanov's completeness criterion, The Journal of Symbolic Logic, vol. 54 (1989), pp. 12881323.
[57] Jockusch, C. G. Jr., and Shore, R. A., Pseudo-jump operators I: the r.e. case, Transactions of the American Mathematical Society, vol. 275 (1983), pp. 599609.
[58] Jockusch, C. G. Jr., and Soare, R. I., classes and degrees of theories, Transactions of the American Mathematical Society, vol. 173 (1972), pp. 3356.
[59] Kamae, T., Subsequences of normal sequences, Israel Journal of Mathematics, vol. 16 (1973), pp. 121149.
[60] Katseff, H. P., Complexity dips in random infinite binary sequences, Information and Control, vol. 38 (1978), pp. 258263.
[61] Kautz, S. M., Degrees of random sets, PhD Dissertation, Cornell University, 1991.
[62] Kechris, A. S. and Moschovakis, Y. (editors), Cabal Seminar 76–77, Lecture Notes in Mathematics, vol. 689, Springer-Verlag, 1978.
[63] Kjos-Hanssen, B., Nies, A., and Stephan, F., Lowness for the class of Schnorr random reals, SIAM Journal on Computing, vol. 35 (2006), no. 3, pp. 647657, preliminary results in [11].
[64] Ko, K.-I, On the notion of infinite pseudorandom sequences, Theoretical Computer Science, vol. 48 (1986), pp. 933.
[65] Kolmogorov, A. N., Three approaches to the quantitative definition of information, Problems of Information Transmission (Problemy Peredachi Informatsii), vol. 1 (1965), pp. 17.
[66] Kraft, L.G., Adevice for quantizing, grouping, and coding amplitude modulated pulses, M.Sc. Thesis, MIT, 1949.
[67] Kučera, A., Measure, -classes and complete extensions of PA, Recursion Theory Week (Ebbinghaus, H.-D., Müller, G. H., and Sacks, G. E., editors), Lecture Notes in Mathematics, vol. 1141, Springer-Verlag, 1985, pp. 245259.
[68] Kučera, A., On the use of diagonally nonrecursive functions, Logic Colloquium '87 (Ebbinghaus, H.-D., editor), Studies in Logic and the Foundations of Mathematics, vol. 129, North-Holland, 1989, pp. 219239.
[69] Kučera, A., On relative randomness, Annals of Pure and Applied Logic, vol. 63 (1993), pp. 6167.
[70] Kučera, A. and Slaman, T.A., Randomness and recursive enumerability, SIAM Journal on Computing, vol. 31 (2001), pp. 199211.
[71] Kučera, A. and Terwijn, S. A., Lowness for the class of random sets, The Journal of Symbolic Logic, vol. 64 (1999), pp. 13961402.
[72] Kummer, M., Kolmogorov complexity and instance complexity of recursively enumerable sets, SIAM Journal on Computing, vol. 25 (1996), pp. 11231143.
[73] Kurtz, S. A., Randomness and genericity in the degrees of unsolvability, PhD Dissertation, University of Illinois, 1981.
[74] Levin, L. A., Some theorems on the algorithmic approach to probability theory and information theory, Dissertation in Mathematics, Moscow, 1971.
[75] Levin, L. A., On the notion of a random sequence, Soviet Mathematics – Doklady, vol. 14 (1973), pp. 14131416.
[76] Levin, L. A., Laws of information conservation (non-growth) and aspects of the foundation of probability theory, Problems of Information Transmission, vol. 10 (1974), pp. 206210.
[77] Lewis, A. E. M. and Barmpalias, G., Randomness and the Lipschitz degrees of computability, to appear.
[78] Li, M. and Vitányi, P., An introduction to Kolmogorov complexity and its applications, 2nd ed., Springer-Verlag, 1997.
[79] Loveland, D., A variant of the Kolmogorov concept of complexity, Information and Control, vol. 15 (1969), pp. 510526.
[80] Lutz, J.H., Category and measure in complexity classes, SIAM Journal on Computing, vol. 19 (1990), pp. 11001131.
[81] Lutz, J.H., Almost everywhere high nonuniform complexity, Journal of Computer and System Sciences, vol. 44 (1992), pp. 220258.
[82] Lutz, J.H., Dimension in complexity classes, SIAM Journal on Computing, vol. 32 (2003), pp. 12361259, extended abstract in 15th Annual IEEE Conference on Computational Complexity (Florence, 2000) (F. Titsworth, editor), IEEE Computer Society, Los Alamitos, CA, 2000, pp. 158–169).
[83] Lutz, J.H., The dimensions of individual strings and sequences, Information and Computation, vol. 187 (2003), pp. 4979, preliminary version: Gales and the constructive dimension of individual sequences, in Proceedings of the 27th International Colloquium on Automata, Languages, and Programming , (U. Montanari, J.D.P. Rolim, and E. Welzl, editors), Springer-Verlag, 2000, pp. 902–913.
[84] Lutz, J.H., Effective fractal dimensions, Mathematical Logic Quarterly, vol. 51 (2005), pp. 6272.
[85] Martin-Löf, P., The definition of random sequences, Information and Control, vol. 9 (1966), pp. 602619.
[86] Mayordomo, E., A Kolmogorov complexity characterization of constructive Hausdorff dimension, Information Processing Letters, vol. 84 (2002), pp. 13.
[87] Merkle, W., The complexity of stochastic sequences, Journal of Computer and System Sciences, to appear, preliminary version in Conference on Computational Complexity 2003 , IEEE Computer Society Press, 2003, pp. 230–235.
[88] Merkle, W. and Mihailović, N., On the construction of effective random sets, The Journal of Symbolic Logic, vol. 69 (2004), pp. 862878, preliminary version in Mathematical Foundations of Computer Science, 2002 (K. Diks and W. Rytter, editors), Lecture Notes in Computer Science, vol. 2420, Springer-Verlag, 2002, pp. 568–580.
[89] Merkle, W., Mihailović, N., and Slaman, T., Some results on effective randomness, Theory of Computing Systems, to appear, preliminary version in International Colloquium on Automata, Languages and Programming 2004 , Lecture Notes in Computer Science, vol. 3142, Springer-Verlag, 2004, pp. 983–995.
[90] Merkle, W., Miller, J.S., Nies, A., Reimann, J., and Stephan, F., Kolmogorov-Loveland randomness and stochasticity, Annals of Pure and Applied Logic, vol. 138 (2006), no. 1–3, pp. 183210, preliminary version in STACS 2005, Lecture Notes in Computer Science, vol. 3404, Springer-Verlag, 2005, pp. 422–433.
[91] Miller, J. S., Every 2-random real is Kolmogorov random, The Journal of Symbolic Logic, vol. 69 (2004), pp. 907913.
[92] Miller, J. S., The K-degrees, low for K degrees, and weakly low for K oracles, in preparation.
[93] Miller, J. S. and Nies, A., Randomness and computability: open questions, this Bulletin, vol. 12 (2006), no. 3, pp. 390410.
[94] Miller, J. S. and Yu, L., On initial segment complexity and degrees of randomness, Transactions of the American Mathematical Society, to appear.
[95] Miller, J. S. and Yu, L., Oscillation in the initial segment complexity of random reals, to appear.
[96] Miller, W. and Martin, D. A., The degrees of hyperimmune sets, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 14 (1968), pp. 159166.
[97] Muchnik, A. A., Semenov, A. L., and Uspensky, V. A., Mathematical metaphysics of randomness, Theoretical Computer Science, vol. 207 (1998), pp. 263317.
[98] Nabutovsky, A. and Weinberger, S., The fractal nature of Riem/Diff I, Geometriae Dedicata, vol. 101 (2003), pp. 154.
[99] Nies, A., Effectively dense Boolean algebras and their applications, Transactions of the American Mathematical Society, vol. 352 (2000), pp. 49895012.
[100] Nies, A., Lowness properties and randomness, Advances in Mathematics, vol. 197 (2005), pp. 274305.
[101] Nies, A., Reals which compute little, Logic Colloquium '02 (Chatzidakis, Z., Koepke, P., and Pohlers, W., editors), Lecture Notes in Logic, vol. 27, Association for Symbolic Logic, 2006, pp. 261275.
[102] Nies, A., Computability and randomness , to appear.
[103] Nies, A., Eliminating concepts, to appear in the proceedings of the Program on Computational Prospects of Infinity, Singapore, 2005, available at http://www.cs.auckland.ac.nz/~nies.
[104] Nies, A., Low for random sets: the story, preprint, available at http://www.cs.auckland.ac.nz/~nies.
[105] Nies, A., Stephan, F., and Terwijn, S. A., Randomness, relativization, and Turing degrees, The Journal of Symbolic Logic, vol. 70 (2005), pp. 515535.
[106] Odifreddi, P. G., Classical recursion theory, vol. 1, Studies in Logic and the Foundations of Mathematics, vol. 125, North-Holland, 1989.
[107] Odifreddi, P. G., Classical recursion theory, vol. 2, Studies in Logic and the Foundations of Mathematics, vol. 143, North-Holland, 1999.
[108] Oxtoby, J. C., Measure and category, 2nd ed., Springer-Verlag, 1980.
[109] Raisonnier, J., A mathematical proof of S. Shelah's theorem on the measure problem and related results, Israel Journal of Mathematics, vol. 48 (1984), pp. 4856.
[110] Reid, S., The classes of algorithmically random reals, Masters Thesis, Victoria University of Wellington, 2003.
[111] Reimann, J., Computability and fractal dimension, PhD Dissertation, University of Heidelberg, 2004.
[112] Reimann, J. and Stephan, F., On hierarchies of randomness tests, transparencies for a talk by Stephan at the 9th Asian Logic Conference, available at http://www.math.uni-heidelberg.de/logic/reimann/lectures.html.
[113] Ryabko, B. Y., Coding of combinatorial sources and Hausdorff dimension, Doklady Akademii Nauk SSSR, vol. 277 (1984), pp. 10661070.
[114] Ryabko, B. Y., Noise-free coding of combinatorial sources, Hausdorff dimension and Kolmogorov complexity, Problems of Information Transmission (Problemy Peredachi Informatsii), vol. 22 (1986), pp. 1626.
[115] Sacks, G. E., Degrees of unsolvability, Annals of Mathematics Studies, vol. 55, Princeton University Press, 1963.
[116] Schnorr, C.-P., A unified approach to the definition of a random sequence, Mathematical Systems Theory, vol. 5 (1971), pp. 246258.
[117] Schnorr, C.-P., Zufälligkeit und Wahrscheinlichkeit, Lecture Notes in Mathematics, vol. 218, Springer-Verlag, 1971.
[118] Schnorr, C.-P., Process complexity and effective random tests, Journal of Computer and System Sciences, vol. 7 (1973), pp. 376388.
[119] Shannon, C. E., The mathematical theory of communication, Bell System Technical Journal, vol. 27 (1948), pp. 379–423, 623656.
[120] Silver, J. H., Counting the number of equivalence classes of Borel and coanalytic equivalence relations, Annals of Mathematical Logic, vol. 18 (1980), pp. 128.
[121] Soare, R. I., Recursively enumerable sets and degrees, Springer-Verlag, 1987.
[122] Soare, R. I., Computability theory and differential geometry, this Bulletin, vol. 10 (2004), pp. 457486.
[123] Solomonoff, R. J., A preliminary report on a general theory of inductive inference, Technical Report ZTB-138, Zator Company, Cambridge, Mass., 11 1960.
[124] Solovay, R., A model of set theory in which every set of reals is Lebesgue measurable, Annals of Mathematics, vol. 92 (1970), pp. 156.
[125] Solovay, R., Draft of a paper (or series of papers) on Chaitin's work, unpublished manuscript, 05 1975, IBM Thomas J. Watson Research Center, New York, 215 pp.
[126] Staiger, L., Kolmogorov complexity and Hausdorff dimension, Information and Computation, vol. 103 (1993), pp. 159194.
[127] Staiger, L., A tight upper bound on Kolmogorov complexity and uniformly optimal prediction, Theory of Computing Systems, vol. 31 (1998), pp. 215229.
[128] Staiger, L., Constructive dimension equals Kolmogorov complexity, Information Processing Letters, vol. 93 (2005), pp. 149153, preliminary version: Research Report CDMTCS-210, University of Auckland, January 2003.
[129] Stephan, F., Martin-Löf random and PA-complete sets, Forschungsbericht Mathematische Logik, vol. 58/2002, Universität Heidelberg, 2002.
[130] Tadaki, K., A generalization of Chaitin's halting probability Ω and halting self-similar sets, Hokkaido Mathematical Journal, vol. 31 (2002), pp. 219253.
[131] Terwijn, S. A., Computability and measure, PhD Dissertation, University of Amsterdam/ILLC, 1998.
[132] Terwijn, S. A., Complexity and randomness, Rendiconti del Seminario Matematico di Torino, vol. 62, 2004, preliminary version: Research Report CDMTCS-212, University of Auckland, March 2003, pp. 1–38.
[133] Terwijn, S.A. and Zambella, D., Computational randomness and lowness, The Journal of Symbolic Logic, vol. 66 (2001), pp. 11991205.
[134] van Lambalgen, M., Random sequences, PhD Dissertation, University of Amsterdam, 1987.
[135] van Lambalgen, M., The axiomatization of randomness, The Journal of Symbolic Logic, vol. 55 (1990), pp. 11431167.
[136] Ville, J., étude Critique de la Notion de Collectif, Gauthier-Villars, 1939.
[137] von Mises, R., Grundlagen der Wahrscheinlichkeitsrechnung, Mathematische Zeitschrift, vol. 5 (1919), pp. 5299.
[138] Wang, Y., Randomness and complexity, PhD Dissertation, University of Heidelberg, 1996.
[139] Wang, Y., A separation of two randomness concepts, Information Processing Letters, vol. 69 (1999), pp. 115118.
[140] Yu, L., When van Lambalgen's Theorem fails, Proceedings of the American Mathematical Society, to appear.
[141] Yu, L. and Ding, D., There are 2 0 many H-degrees in the random reals, Proceedings of the American Mathematical Society, vol. 132 (2004), pp. 24612464.
[142] Yu, L. and Ding, D., There is no sw-complete c.e. real, The Journal of Symbolic Logic, vol. 69 (2004), pp. 11631170.
[143] Yu, L., Ding, D., and Downey, R., The Kolmogorov complexity of random reals, Annals of Pure and Applied Logic, vol. 129 (2004), pp. 163180.
[144] Zambella, D., On sequences with simple initial segments, ILLC technical reportML-1990-05, University of Amsterdam, 1990.
[145] Zvonkin, A. K. and Levin, L. A., The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms, Russian Mathematical Surveys, vol. 25 (1970), pp. 83124.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Symbolic Logic
  • ISSN: 1079-8986
  • EISSN: 1943-5894
  • URL: /core/journals/bulletin-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed