[Alv99] Alvarez, Carlos, On the history of Souslin’s problem. Archive for History of Exact Sciences, vol. 54 (1999), no. 3, pp. 181–242.
[ARS85] Abraham, Uri, Rubin, Matatyahu, and Shelah, Saharon, On the consistency of some partition theorems for continuous colorings, and the structure ℵ_{1} of -dense real order types. Annals of pure and applied logic, vol. 29 (1985), no. 2, pp. 123–206.
[AS81] Avraham, Uri and Shelah, Saharon, Martin’s axiom does not imply that every two ℵ_{1} -dense sets of reals are isomorphic. Israel Journal of Mathematics, vol. 38 (1981), pp. 161–176.
[Bau73] Baumgartner, James E., All ℵ_{1} -dense sets of reals can be isomorphic. Fundamenta Mathematicae, vol. 79 (1973), no. 2, pp. 101–106.
[Bau76] Baumgartner, James E., A new class of order types. Annals of Mathematics Logic, vol. 9 (1976), no. 3, pp. 187–222.
[Bla72] Blass, Andreas, Weak partition relations. Proceedings of the American Mathematical Society, vol. 35 (1972), pp. 249–253.
[BMR70] Baumgartner, J., Malitz, J., and Reinhardt, W., Embedding trees in the rationals. Proceedings of the National Academy of Sciences, U.S.A, vol. 67 (1970), pp. 1748–1753.
[BS85] Bonnet, Robert and Shelah, Saharon, Narrow boolean algebras. Annals of Pure and Applied Logic, vol. 28 (1985), pp. 1–12.
[Coh64] Cohen, Paul J., The independence of the continuum hypothesis. II. Proceedings of the National Academy of Sciences, U.S.A, vol. 51 (1964), pp. 105–110.
[EHMR84] Erdős, Paul, Hajnal, András, Máté, Attila, and Rado, Richard, .
[EHR65] Erdős, P., Hajnal, A., and Rado, R., Partition relations for cardinal numbers. Acta Mathematica Academiae Scientiarum Hungaricae, vol. 16 (1965), pp. 93–196.
[Eis10] Eisworth, Todd, Club-guessing, stationary reflection, and coloring theorems. Annals of pure and applied logic, vol. 161 (2010), no. 10, pp. 1216–1243.
[Eis13] Eisworth, Todd, Getting more colors II. Journal of Symbolic Logic, vol. 78 (2013), no. 1, pp. 17–38.
[ET43] Erdös, P. and Tarski, A, On families of mutually exclusive sets. Annals of Mathematics (2), vol. 44 (1943), pp. 315–329.
[Fle78] Fleissner, William G., Some spaces related to topological inequalities proven by the Erdős-Rado theorem. Proceedings of the American Mathematical Society, vol. 71 (1978), no. 2, pp. 313–320.
[Fre84] Fremlin, D. H., .
[Gal80] Galvin, Fred, Chain conditions and products. Fundamenta Mathematicae, vol. 108 (1980), no. 1, pp. 33–48.
[GS73] Galvin, Fred and Shelah, Saharon, Some counterexamples in the partition calculus. Journal of Combinatorial Theory, Series A, vol. 15 (1973), pp. 167–174.
[Jen72] Björn Jensen, R., The fine structure of the constructible hierarchy. Annals of Mathematical Logic, vol. 4 (1972), pp. 229–308; erratum, ibid. 4(1972), 443, With a section by Jack Silver.
[Jen14] Björn Jensen, R., .
[Juh80] Juhász, István, .
Kanamori, Akihiro, .
[KLMV08] König, Bernhard, Larson, Paul, Moore, Justin Tatch, and Veličković, Boban, Bounding the consistency strength of a five element linear basis, Israel Journal of Mathematics, vol. 164 (2008), pp. 1–18.
[Kop89] Koppelberg, Sabine, Handbook of Boolean algebras. Vol. 1 (Donald Monk, J. and Bonnet, Robert, editors), North-Holland Publishing Co., Amsterdam, 1989.
[Kru13] Krueger, John, Weak square sequences and special Aronszajn trees, Fundamenta Mathematicae, vol. 221 (2013), no. 3, pp. 267–284.
[KS93] Kojman, Menachem and Shelah, Saharon, μ-complete Souslin trees on μ ^{1}, Archive for Mathematical Logic, vol. 32 (1993), no. 3, pp. 195–201.
[Kun78] Kunen, Kenneth, Saturated ideals. Journal of Symbolic Logic, vol. 43 (1978), no. 1, pp. 65–76.
[Kur52] Kurepa, Djuro, Sur une propriété caractéristique du continu linéaire et le problème de Suslin. Academie Serbe des Sciences, Publications de l’Institut Mathematique, vol. 4 (1952), pp. 97–108.
Kurepa, Djuro, The Cartesian multiplication and the cellularity number. Publications de l’Institut Mathematique (Beograd) (N.S.), vol. 2 (1963), no. 16, pp. 121–139.
[LS81] Laver, Richard and Shelah, Saharon, The ℵ_{2}-souslin hypothesis. Transactions of the American Mathematical Society, vol. 264 (1981), pp. 411–417.
[Mag82] Magidor, Menachem, Reflecting stationary sets. Journal of Symbolic Logic, vol. 47 (1982), no. 4, pp. 755–771 (1983).
[Mar47] Marczewski, Edward, Séparabilité et multiplication cartésienne des espaces topologiques. Fundamenta Mathematicae, vol. 34 (1947), pp. 127–143.
[Mit73] Mitchell, William, Aronszajn trees and the independence of the transfer property. Annals of Mathematical Logic, vol. 5 (1972/73), pp. 21–46.
[Mon14] Donald Monk, J., .
[Moo06] Moore, Justin Tatch, A five element basis for the uncountable linear orders. Annals of Mathematics (2), vol. 163 (2006), no. 2, pp. 669–688.
[Rin11] Rinot, Assaf, .
[Rin12] Rinot, Assaf, Transforming rectangles into squares, with applications to strong colorings. Advances in Mathematics, vol. 231 (2012), no. 2, pp. 1085–1099.
[Rin14a] Rinot, Assaf, .
[Rin14b] Rinot, Assaf, The Ostaszewski square, and homogeneous Souslin trees. Israel Journal of Mathematics, vol. 199 (2014), no. 2, pp. 975–1012.
[Roi78] Roitman, Judy, A reformulation of S and L. Proceedings of the American Mathematical Society, vol. 69 (1978), no. 2, pp. 344–348.
[Roy89] Roy, Nina M., Is the product of ccc spaces a ccc space?. Publicacions Matematiques, vol. 33 (1989), no. 2, pp. 173–183.
[She78] Shelah, Saharon, Jonsson algebras in successor cardinals. Israel Journal of Mathematics, vol. 30 (1978), pp. 57–64.
Shelah, Saharon, Successors of singulars, cofinalities of reduced products of cardinals and productivity of chain conditions. Israel Journal of Mathematics, vol. 62 (1988), pp. 213–256.
[She88b] Shelah, Saharon, Was sierpiński right? I. Israel Journal of Mathematics, vol. 62 (1988), pp. 355–380.
[She90] Shelah, Saharon, Strong negative partition above the continuum. The Journal of Symbolic Logic, vol. 55 (1990), pp. 21–31.
[She91] Shelah, Saharon, Strong negative partition relations below the continuum. Acta Mathematica Hungarica, vol. 58 (1991), pp. 95–100.
[She94a] Shelah, Saharon, .
[She94b] Shelah, Saharon, There are jonsson algebras in many inaccessible cardinals. Cardinal arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press, 1994.
[She97] Shelah, Saharon, Colouring and non-productivity of ℵ_{2} -cc. Annals of Pure and Applied Logic, vol. 84 (1997), pp. 153–174.
[Sie33] Sierpiński, Waclaw, Sur un problème de la théorie des relations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2), vol. 2 (1933), no. 3, pp. 285–287.
[Spe49] Specker, E., Sur un problème de Sikorski. Colloquium Mathematicum, vol. 2 (1949), pp. 9–12.
[SS88] Shelah, Saharon and Stanley, Lee, Weakly compact cardinals and nonspecial Aronszajn trees. Proceedings of the American Mathematical Society, vol. 104 (1988), no. 3, pp. 887–897.
[Tod84] Todorčević, Stevo, .
[Tod85] Todorčević, Stevo, Remarks on chain conditions in products. Compositio Mathematica, vol. 55 (1985), no. 3, pp. 295–302.
[Tod86] Todorčević, Stevo, Remarks on cellularity in products. Compositio Mathematica, vol. 57 (1986), no. 3, pp. 357–372.
[Tod87] Todorčević, Stevo, Partitioning pairs of countable ordinals. Acta Mathematica, vol. 159 (1987), no. 3–4, pp. 261–294.
[Tod88] Todorčević, Stevo, Oscillations of real numbers, Logic colloquium ’86 (Hull, 1986), Studies in Logic and the Foundations of Mathematics, vol. 124, North-Holland, Amsterdam, 1988, pp. 325–331.
[Tod89a] Todorčević, Stevo, Partition problems in topology, Contemporary Mathematics, vol. 84, American Mathematical Society, Providence, RI, 1989.
[Tod89b] Todorčević, Stevo, Special square sequences. Proceedings of the American Mathematical Society, vol. 105 (1989), no. 1, pp. 199–205.
Todorčević, Stevo, Oscillations of sets of integers. Advances in Applied Mathematics, vol. 20 (1998), no. 2, pp. 220–252.
[Tod07] Todorčević, Stevo, Walks on ordinals and their characteristics, Progress in Mathematics, vol. 263, Birkhäuser Verlag, Basel, 2007.
[Vel86] Veličković, Boban, Jensen’s □ principles and the Novák number of partially ordered sets. Journal of Symbolic Logic, vol. 51 (1986), no. 1, pp. 47–58.
[Vel92] Todorčević, Stevo, Forcing axioms and stationary sets. Advances in Mathematics, vol. 94 (1992), no. 2, pp. 256–284.