Skip to main content
×
×
Home

THE CONVENIENCE OF THE TYPESETTER; NOTATION AND TYPOGRAPHY IN FREGE’S GRUNDGESETZE DER ARITHMETIK

  • J. J. GREEN (a1), MARCUS ROSSBERG (a2) and PHILIP A. EBERT (a3)
Abstract

We discuss the typography of the notation used by Gottlob Frege in his Grundgesetze der Arithmetik.

Copyright
References
Hide All
[1]Abraham, M. and Langevin, Paul, Notions géométriques fondamentales, Encyclopédie des sciences mathématiques pures et appliquées, tome IV, vol. 5, Gauthier-Villars, Paris, 1912, pp. 160.
[2]Boccuni, Francesca, Plural Grundgesetze. Studia Logica, vol. 96 (2010), pp. 315330.
[3]Brockhaus’ Konversations-Lexikon, 14th ed., vol. 10, Brockhaus, Leipzig, 1894.
[4]Thomas John I’Anson Bromwich, An introduction to the theory of infinite series, 1 ed., Macmillan, London, 1908.
[5]Burgess, John P., Fixing Frege, Princeton Monographs in Philosophy, Princeton University Press, Princeton, NJ, 2005.
[6]Byrne, Oliver, Dual arithmetic: A new art, Bell and Daldy, London, 1863.
[7]Cajori, Florian, A history of mathematical notations, vol. II, Open Court, Chicago, 1952.
[8]Cantor, Georg, Ueber unendliche, lineare Punktmannichfaltigkeiten. 5. Fortsetzung: Grundlagen einer allgemeinen Mannigfaltigkeitslehre, Mathematische Annalen, vol. XXI (1883), pp. 545590. English translation by William Ewald in [17], vol. II, pp. 881–920.
[9]Cook, Roy T., How to read Grundgesetze, [28], pp. A1–A42 (appendix).
[10]Cook, Roy T., Frege’s little theorem and Frege’s way out, Essays on Frege’s Basic Laws of Arithmetic (Ebert, Philip A. and Rossberg, Marcus, editors), Oxford University Press, Oxford, 2014.
[11]Courbe, H., Review of [21], Polybiblion: Revue bibliographique universelle. Partie Littéraire. Deuxième Série. Tome Quarantième, vol. 71 (1894), pp. 428429. English translation by Charlotte A. Geniez in Ebert and Rossberg [16].
[12]Dummett, Michael, Frege’s way out: A footnote to a footnote. Analysis, vol. 33 (1971), pp. 139140.
[13]Dummett, Michael, Frege: Philosophy of language, 2nd ed., Harvard University Press, Cambridge, MA, 1981.
[14]Ebert, Philip A. and Rossberg, Marcus, Cantor on Frege’s Foundations of Arithmetic: Cantor’s 1885 review of Frege’s Die Grundlagen der Arithmetik. History and Philosophy of Logic, vol. 30 (2009), pp. 341348.
[15]Ebert, Philip A. and Rossberg, Marcus, Translators’ introduction, [28], pp. xiii–xxxix.
[16]Ebert, Philip A. and Rossberg, Marcus (editors), Essays on Frege’s Basic Laws of Arithmetic, Oxford University Press, Oxford, forthcoming.
[17]Ewald, William Bragg (editor), From Kant to Hilbert: A source book in the foundations of mathematics. 2 vols., Oxford University Press, Oxford, 1996.
[18]Ferreira, Fernando and Wehmeier, Kai F., On the consistency of the -CA fragment of Frege’s Grundgesetze. Journal of Philosophical Logic, vol. 31 (2002), no. 4, pp. 301311.
[19]Frege, Gottlob, Begriffsschrift: Eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Verlag L. Nebert, Halle a. d. Saale, 1879, English translation by S. Bauer-Mengelberg in [53], pp. 1–82; and by T. W. Bynum in [26].
[20]Frege, Gottlob, Die Grundlagen der Arithmetik. Eine logisch mathematische Untersuchung über den Begriff der Zahl, Wilhelm Koebner, Breslau, 1884, English translation: [25].
[21]Frege, Gottlob, Grundgesetze der Arithmetik, vol. 1, Hermann Pohl, Jena, 1893, English translation in [28].
[22]Frege, Gottlob, Ueber die Begriffsschrift des Herrn Peano und meine eigene, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physikalische Klasse, vol. XLVIII (1897), pp. 361378, English translation in [27].
[23]Frege, Gottlob, Grundgesetze der Arithmetik, vol. 2, Hermann Pohl, Jena, 1903, English translation in [28].
[24]Frege, Gottlob, Antwort auf die Ferienplauderei des Herrn Thomae. Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 15 (1906), pp. 586590. English translation in [27], pp. 341–345.
[25]Frege, Gottlob, The foundations of arithmetic. Translated by Austin, J. L., Blackwell, Oxford, 1950.
[26]Frege, Gottlob, Conceptual notation and related articles. Ed. and trans. by Bynum, T. W., Oxford University Press, Oxford, 1972.
[27]Frege, Gottlob, Collected papers on mathematics, logic, and philosophy. Ed. by McGuinness, B., Blackwell, Oxford, 1984.
[28]Frege, Gottlob, Basic laws of arithmetic. Ed. and trans. by Ebert, P. A. and Rossberg, M., Oxford University Press, Oxford, 2013.
[29]Hardy, G. H., Collected papers of G. H. Hardy: Including joint papers with J. E. Littlewood, vol. VI, Clarendon Press, Oxford, 1974.
[30]Hardy, G. H. and Littlewood, J. E., Theorems concerning the summability of series by Borel’s exponential method, Rendiconti del Circolo Matematico di Palermo, First Series, vol. 41 (1916), pp. 3653, Reprinted in [29, p. 609].
[31]Hardy, Godfrey Harold, A course of pure mathematics, University of Michigan Library, Ann Arbor, 1908.
[32]Heck, Richard G. Jr, The consistency of predicative fragments of Frege’s Grundgesetze der Arithmetic. History and Philosophy of Logic, vol. 17 (1996), pp. 209220.
[33]Heck, Richard G. Jr, Frege’s theorem, Oxford University Press, Oxford, 2011.
[34]Heck, Richard G. Jr, Reading Frege’s Grundgesetze, Oxford University Press, Oxford, 2012.
[35]Hilbert, David, Neubegründung der Mathematik. Abhandlungen aus dem Mathematischen Seminar der Hamburger Universität, vol. 1 (1922), pp. 157177.
[36]Himmer, J. P., Unsere Schriften/Buchdruckerei, Himmer, Augsburg, 1933. Printer’s specimen, copies at the Bayerische Staatsbibliothek, Munich and at the Staats- und Stadtbibliothek, Augsburg.
[37]Hurewicz, W., On duality theorems. American Mathematical Society, Bulletin, vol. 47 (1941), pp. 562563.
[38]Kreiser, Lothar, Gottlob Frege: Leben, Werk, Zeit, Meiner Felix Verlag, Hamburg, 2001.
[39]Landini, Gregory, The ins and outs of Frege’s way out. Philosophia Mathematica, vol. 14 (2006), pp. 125.
[40]Landini, Gregory, Frege’s notations: What they are and how they mean, Palgrave Macmillan, New York, 2012.
[41]Leathem, John Gaston, Volume and surface integrals used in physics, Cambridge Tracts in Mathematics and Mathematical Physics, vol. 1, Cambridge University Press, Cambridge, 1905.
[42]Mac Lane, Saunders, Categories for the working mathematician, Springer, New York, 1971.
[43]Quine, W. V., Methods of logic, Henry Holt, New York, 1950.
[44]Quine, W. V., On Frege’s way out. Mind, vol. 64 (1955), pp. 145159.
[45]Renfro, Dave L., The arrow notation for limits, http://jeff560.tripod.com/calculus.html, 2010.
[46]Romanovsky, V., Sur une généralisation de la loi sinusoïdale limite. Rendiconti del Circolo Matematico di Palermo, First Series, vol. 57 (1933), pp. 130136.
[47]Russell, Bertrand, Letter to Frege, In van Heijenoort [53], pp. 124125.
[48]Schellbach, , Über die Zeichen der Mathematik. Journal für die reine und angewandte Mathematik (Crelle’s Journal), vol. XII (1834), no. 1–2, pp. 7081, 148–166.
[49]Sobociński, Boleław, L’analyse de l’antinomie russellienne par Leśniewski, Methodos, vol. 12 (1949-1950), pp. 94107, 220–228, 308–316; 6–7, 237–257. English translation by Robert E. Clay: [50].
[50]Sobociński, Boleław, Leśniewski’s Analysis of Russell’s Paradox, Leśniewski’s systems: Ontology and mereology (Srzednicki, J. T. J., Rickey, V. F., and Czelakowski, J., editors), Martinus Nijhoff, Boston, 1984, pp. 1144.
[51]Stötzner, Andreas, Gewichts- und Währungszeichen: Übersicht, Auszug aus Signa: Beiträge zur Signographie 3 (2002): Zweite ergänzte Fassung 1.2, 2005.
[52]Thomae, J., Elementare Theorie der analytischen Functionen einer complexen Veränderlichen, 2nd ed., Nebert, Halle a. d. Saale, 1898.
[53]van Heijenoort, Jean (editor), From Frege to Gödel: A source book in mathematical logic 1879–1931, Harvard University Press, Cambridge, MA, 1967.
[54]Vilkko, Risto, The Reception of Frege’s Begriffsschrift. Historia Mathematica, vol. 25 (1998), pp. 412422, article no. HM982213.
[55]Waldow, Alexander (editor), Illustrierte Encyklopädie der graphischen Künste und der verwandten Zweige, Druck und Verlag von Alexander Waldow, Leipzig, 1884.
[56]Wehmeier, Kai F., Consistent fragments of Grundgesetze and the existence of non-logical objects. Synthese, vol. 121 (1999), pp. 309328.
[57]Wehmeier, Kai F. and Schmidt am Busch, H.-C., The quest for Frege’s Nachlass, Critical assessments of leading philosophers: Gottlob Frege (Beaney, Michael and Reck, Erich, editors), vol. 1, Routledge, London, 2005, pp. 5467.
[58]Wright, Crispin, Frege’s conception of numbers as objects, Scots Philosophical Monograph Series, no. 2, Aberdeen University Press, Aberdeen, 1983.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Symbolic Logic
  • ISSN: 1079-8986
  • EISSN: 1943-5894
  • URL: /core/journals/bulletin-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed