[1]Aberth O., Computable Analysis, vol. 15, McGraw-Hill New York, 1980.
[2]Avigad J. and Brattka V., Computability and analysis: the legacy of Alan Turing, Turing’s Legacy. Cambridge University Press, Cambridge, UK, 2012.
[3]Bienvenu L., Day A., Greenberg N., Kučera A., Miller J., Nies A., and Turetsky D., Computing K-trivial sets by incomplete random sets. this Bulletin, vol. 20 (2014), pp. 80–90.
[4]Bienvenu L., Downey R., Greenberg N., Nies A., and Turetsky D., Characterizing lowness for Demuth randomness. The Journal of Symbolic Logic, vol. 79 (2014), no. 2, pp. 526–569.
[5]Bienvenu L., Greenberg N., Kučera A., Nies A., and Turetsky D., Coherent randomness tests and computing the K-trivial sets. Journal of European Mathematical Society, to appear, 2015.
[6]Bienvenu L., Hölzl R., Miller J., and Nies A., The Denjoy alternative for computable functions, STACS, 2012, pp. 543–554.
[7]Bienvenu L., Hölzl R., Miller J., and Nies A., Denjoy, Demuth, and Density. Journal of Mathematical Logic, vol. 1450004 (2014), p. 35.
[8]Bienvenu L. and Porter C., Strong reductions in effective randomness. Theoretical Computer Science, vol. 459 (2012), pp. 55–68.
[9]Bogachev V. I., Measure Theory. Vol. I, II, Springer-Verlag, Berlin, 2007.
[10]Borel E., Le calcul des intégrales définies. Journal de Mathématiques pures et appliquées, 6 série, tome 8 (1912), pp. 159–210.
[11]Brattka V., Hertling P., and Weihrauch K., A tutorial on computable analysis, New Computational Paradigms: Changing Conceptions of What is Computable (Cooper S. Barry, Löwe Benedikt, and Sorbi Andrea, editors), Springer, New York, 2008, pp. 425–491.
[12]Brattka V., Miller J., and Nies A., Randomness and differentiability. Transactions of the AMS, http://dx.doi.org/10.1090/tran/6484. Article electronically published on May 27, 2015. [13]Brodhead P., Downey R., and Ng K. M., Bounded randomness, Computation, Physics and Beyond, 2012, pp. 59–70.
[14]Cater F. S., Some analysis without covering theorems. Real Analysis Exchange, vol. 12 (1986/87), no. 2, pp. 533–540.
[15]Ceĭtin G. S., Uniform recursiveness of algorithmic operators on general recursive functions and a canonical representation for constructive functions of a real argument, , 1956, (Russian), pp. 188–189.
[16]Ceĭtin G. S., Algorithmic operators in constructive complete separable metric spaces. Doklady Akademii Nauk, vol. 128 (1959), pp. 49–52, (Russian).
[17]Ceĭtin G. S., Algorithmic operators in constructive metric spaces. Trudy Matematicheskogo Instituta imeni VA Steklova, vol. 67 (1962), pp. 295–361, (in Russian, English trans. in AMS Trans. 64, 1967).
[18]Ceĭtin G. S., On Upper Bounds of Recursively Enumerable Sets of Constructive Real Numbers, Proceedings of the Steklov Institute of Mathematics, vol. 113, 1970, pp. 119–194.
[19]Ceĭtin G. S., and Zaslavskiĭ I. D., Singular coverings and properties of constructive functions connected with them. Trudy Matematicheskogo Instituta imeni VA Steklova, vol. 67 (1962), pp. 458–502, (Russian).
[20]Church A., An unsolvable problem of elementary number theory. American Journal of Mathematics, (1936), pp. 345–363.
[21]Demuth O., The differentiability of constructive functions. Commentationes Mathematicae Universitatis Carolinae, vol. 10 (1969), pp. 167–175, (Russian).
[22]Demuth O., The Lebesgue measurability of sets in constructive mathematics. Commentationes Mathematicae Universitatis Carolinae, vol. 10 (1969), pp. 463–492, (Russian).
[23]Demuth O., The spaces L_{n} and S in constructive mathematics. Commentationes Mathematicae Universitatis Carolinae, vol. 10 (1969), pp. 261–284, (Russian).
[24]Demuth O., Constructive pseudonumbers. Commentationes Mathematicae Universitatis Carolinae, vol. 16 (1975), pp. 315–331, (Russian).
[25]Demuth O., The differentiability of constructive functions of weakly bounded variation on pseudo numbers. Commentationes Mathematicae Universitatis Carolinae, vol. 16 (1975), no. 3, pp. 583–599, (Russian).
[26]Demuth O., The constructive analogue of the Denjoy-Young theorem on derived numbers. Commentationes Mathematicae Universitatis Carolinae, vol. 17 (1976), no. 1, pp. 111–126, (Russian).
[27]Demuth O., The pseudodifferentiability of uniformly continuous constructive functions on constructive real numbers. Commentationes Mathematicae Universitatis Carolinae, vol. 19 (1978), no. 2, pp. 319–333, (Russian).
[28]Demuth O., The constructive analogue of a theorem by Garg on derived numbers. Commentationes Mathematicae Universitatis Carolinae, vol. 21 (1980), no. 3, pp. 457–472, (Russian).
[29]Demuth O., Borel types of some classes of arithmetical real numbers. Commentationes Mathematicae Universitatis Carolinae, vol. 23 (1982), no. 3, pp. 593–606, (Russian).
[30]Demuth O., Some classes of arithmetical real numbers. Commentationes Mathematicae Universitatis Carolinae, vol. 23 (1982), no. 3, pp. 453–465, (Russian).
[31]Demuth O., On the pseudodifferentiability of pseudo uniformly continuous constructive functions from functions of the same type. Commentationes Mathematicae Universitatis Carolinae, vol. 24 (1983), no. 3, pp. 391–406, (Russian).
[32]Demuth O., A notion of semigenericity. Commentationes Mathematicae Universitatis Carolinae, vol. 28 (1987), no. 1, pp. 71–84.
[33]Demuth O., Reducibilities of sets based on constructive functions of a real variable. Commentationes Mathematicae Universitatis Carolinae, vol. 29 (1988), no. 1, pp. 143–156.
[35]Demuth O., Remarks on the structure of tt-degrees based on constructive measure theory. Commentationes Mathematicae Universitatis Carolinae, vol. 29 (1988), no. 2, pp. 233–247.
[36]Demuth O., Remarks on Denjoy sets, Mathematical Logic, Plenum, New York, 1990, pp. 267–280.
[37]Demuth O., Kryl R., and Kučera A., The use of the theory of functions that are partial recursive relative to numerical sets in constructive mathematics, Acta Univ. Carolin.—Math. Phys., vol. 19 (1978), no. 1, pp. 15–60, (Russian).
[38]Demuth O., and Kučera A., Remarks on constructive mathematical analysis, Logic Colloquium ’78 (Mons, 1978), Studies in Logic and the Foundations of Mathematics, vol. 97, North-Holland, Amsterdam, 1979, pp. 81–129.
[39]Demuth O., and Kučera A.Remarks on 1-genericity, semigenericity and related concepts. Commentationes Mathematicae Universitatis Carolinae, vol. 28 (1987), no. 1, pp. 85–94.
[40]Downey R., and Hirschfeldt D., Algorithmic Randomness and Complexity, Springer-Verlag, Berlin, 2010, p. 855.
[41]Downey R., Hirschfeldt D., and Nies A., Randomness, computability, and density. SIAM Journal on Computing, vol. 31 (2002), no. 4, pp. 1169–1183.
[42]Figueira S., Nies A., and Stephan F., Lowness properties and approximations of the jump. Annals of Pure and Applied Logic, vol. 152 (2008), pp. 51–66.
[43]Franklin J. N. Y., and Ng K. M., Difference randomness. Proceedings of the American Mathematical Society, vol. 139 (2011), no. 1, pp. 345–360.
[44]Freer C., Kjos-Hanssen B., Nies A., and Stephan F., Algorithmic aspects of Lipschitz functions. Computability, vol. 3 (2014), no. 1, pp. 45–61.
[45]Greenberg N., and Turetsky D., Strong jump-traceability and Demuth randomness. Proceedings of the London Mathematical Society, vol. 108 (2014), pp. 738–779.
[46]Kalantari I., and Welch L., A blend of methods of recursion theory and topology. Annals of Pure and Applied Logic, vol. 124 (2003), no. 1, pp. 141–178.
[47]Kautz S., Degrees of Random Sets, Ph.D. Dissertation, Cornell University, Ithaca, NY, 1991.
[48]Kjos-Hanssen B., Merkle W., and Stephan F., Kolmogorov complexity and the recursion theorem. Transactions of the American Mathematical Society, vol. 363 (2011), no. 10, pp. 5465–5480.
[49]Kreisel G., Lacombe D., and Shoenfield J. R., Partial recursive functionals and effective operations, Constructivity in Mathematics (Heyting A., editor), Studies in Logic and the Foundations of Mathematics, North-Holland, 1959, Proceedings of the Colloquium at Amsterdam, 1957, pp. 290–297.
[50]Kurtz S., Randomness and Genericity in the Degrees of Unsolvability, Ph.D. Dissertation, University of Illinois, Urbana, 1981.
[51]Kushner B. A., Lectures on Constructive Mathematical Analysis, Translations of Mathematical Monographs, vol. 60, American Mathematical Society, Providence, RI, 1984. Translated from the Russian by E. Mendelson, Translation edited by Leifman Lev J..
[52]Kushner B. A., Markov’s constructive analysis; a participant’s view. Theoretical Computer Science, vol. 219 (1999), no. 1–2, pp. 267–285, Computability and complexity in analysis (Castle Dagstuhl, 1997).
[53]Kučera A., and Nies A., Demuth randomness and computational complexity. Annals of Pure and Applied Logic, vol. 162 (2011), pp. 504–513.
[54]Kučera A., and Nies A., Demuth’s path to randomness (extended abstract), Proceedings of the 2012 International Conference on Theoretical Computer Science: Computation, Physics and Beyond, WTCS’12, Springer-Verlag, 2012, pp. 159–173.
[55]Levin L. A., and Zvonkin A. K., The complexity of finite objects and the basing of the concepts of information and randomness on the theory of algorithms. Uspekhi Matematicheskikh Nauk, vol. 25 (1970), no. 6, 156, pp. 85–127.
[56]Markov A. A., The Theory of Algorithms, vol. 42, , 1954.
[57]Markov A. A., Constructive functions, 4Trudy Matematicheskogo Instituta im. VA Steklova, vol. 52 (1958), pp. 315–348.
[58]Martin-Löf P., The definition of random sequences. Information and Control, vol. 9 (1966), pp. 602–619.
[59]Miller J., Pi-0-1 Classes in Computable Analysis and Topology, Cornell University, 2002.
[60]Miller J., and Nies A., Randomness and computability: Open questions, this Bulletin, vol. 12 (2006), no. 3, pp. 390–410.
[61]Miller J., and Yu L., On initial segment complexity and degrees of randomness. Transactions of the American Mathematical Society, vol. 360 (2008), pp. 3193–3210.
[62]Nerode A., General topology and partial recursive functionals, Summaries of talks at the Cornell Summer Institute of Symbolic Logic, Cornell University, 1957, pp. 247–251.
[63]Nies A., Reals which compute little, Logic Colloquium ’02, , 2002, pp. 260–274.
[64]Nies A., Computability and Randomness, Oxford Logic Guides, vol. 51, Oxford University Press, Oxford, 2009, pp. 444, .
[65]Nies A., Computably enumerable sets below random sets. Annals of Pure and Applied Logic, vol. 163 (2012), no. 11, pp. 1596–1610.
[66]Nies A., Differentiability of polynomial time computable functions, 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014) (Mayr Ernst W. and Portier Natacha, editors), Leibniz International Proceedings in Informatics (LIPIcs), vol. 25, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014, pp. 602–613.
[67]Nies A., Stephan F., and Terwijn S., Randomness, relativization and Turing degrees. Journal of Symbolic Logic, vol. 70 (2005), no. 2, pp. 515–535.
[68]Pour-El M., and Richards J., Computability in Analysis and Physics, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1989.
[69]Rogers H. Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967.
[70]Šanin N. A., A constructive interpretation of mathematical judgments. Trudy Matematicheskogo Instituta imeni VA Steklova, vol. 52 (1958), pp. 226–311, (Russian).
[71]Schnorr C. P., A unified approach to the definition of random sequences. Mathematical Systems Theory, vol. 5 (1971), no. 3, pp. 246–258.
[72]Simpson S., and Cole J., Mass problems and hyperarithmeticity. Journal of Mathematical Logic, vol. 7 (2007), no. 2, pp. 125–143.
[73]Solovay R., Handwritten Manuscript Related to Chaitin’s Work, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, p. 215, 1975.
[74]Terwijn S., Computability and Measure, Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, 1998.
[75]Turing A., On computable numbers, with an application to the entscheidungsproblem. Proceedings of the London Mathematical Society, ser. 2, vol. 42 (1937), pp. 230–265.
[76]Weihrauch K., Computable Analysis, Springer, Berlin, 2000.
[77]Zambella D., Sequences with simple initial segments, Technical Report ML-1990-05, The Institute for Logic, Language, and Computation (ILLC), University of Amsterdam, Amsterdam, 1990.
[78]Zaslavskiĭ I. D., Some properties of constructive real numbers and constructive functions. Trudy Matematicheskogo Instituta im. VA Steklova, vol. 67 (1962), pp. 385–457.