[1]
Aczel, P. and Richter, W., Inductive definitions and analogues of large cardinals, in Conference in mathematical logic — London '70 (Hodges, W., editor), Lecture Notes in Mathematics, vol. 255, Springer-Verlag, Berlin, 1972, pp. 1–10.

[2]
Feferman, S., Göodel's program for new axioms: Why, where, how and what?, in Göodel '96, (Hájek, P., editor), Lecture Notes in Logic, vol. 6, 1996, pp. 3–22.

[3]
Feferman, S., In the light of logic, Oxford University Press, New York, 1998.

[4]
Feferman, S., Does mathematics need new axioms?, American Mathematical Monthly, vol. 106 (1999), pp. 99–111.

[5]
Friedman, H., Finite functions and the necessary use of large cardinals, Annals of Mathematics, vol. 148 (1998), pp. 803–893.

[6]
Gödel, K., Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Monatshefte für Mathematik und Physik, vol. 38 (1931), pp. 173–198. Reprinted, with English translation, in *
***Collected Works,, Vol. I., Publications 1929–1936**
(S. Feferman, et al., editors), Oxford University Press, New York, 1986, pp. 144–195.

[7]
Gödel, K., What is Cantor's continuum problem?, American Mathematical Monthly, vol. 54 (1947), pp. 515–525; errata 55, 151. Reprinted in *
***Collected Works, Vol. II., Publications 1938–1974**
(S. Feferman, et al., editors), Oxford University Press, New York, 1990, pp. 176–187. (1964 revised and expanded version, ibid., pp. 254–270.)

[8]
Gödel, K., Collected Works, Vol. III., Unpublished essays and lectures (S. Feferman, et al., editors), Oxford University Press, New York, 1995.

[9]
Griffor, E. and Rathjen, M., The strength of some Martin-Löf type theories, Archive for Mathematical Logic, vol. 33 (1994), pp. 347–385.

[10]
Jäger, G. and Studer, T., *Extending the system T*_{0} of explicit mathematics: the limit and Mahlo axioms, to appear.

[11]
Kanamori, A., The higher infinite, Springer-Verlag, Berlin, 1994.

[12]
Maddy, P., Realism in mathematics, Clarendon Press, Oxford, 1990.

[13]
Maddy, P., Naturalism in mathematics, Clarendon Press, Oxford, 1997.

[14]
Martin, D. A., Hilbert's first problem: The continuum hypothesis, in Mathematical developments arising from Hilbert problems (Browder, F., editor), Proceedings of Symposia in Pure Mathematics, vol. 28, American Mathematical Society, Providence, 1976, pp. 81–92.

[15]
Martin, D. A. and Steel, J., A proof of projective determinacy, Journal of the American Mathematical Society, vol. 2 (1989), pp. 71–125.

[16]
Paris, J. and Harrington, L., A mathematical incompleteness in Peano arithmetic, in Handbook of mathematical logic (Barwise, J., editor), North-Holland, Amsterdam, 1977, pp. 1133–1142.

[17]
Pohlers, W., Subsystems of set theory and second order number theory, in Handbook of proof theory (Buss, S. R., editor), Elsevier, Amsterdam, 1998, pp. 209–335.

[18]
Rathjen, M., Recent advances in ordinal analysis: -CA and related systems, Bulletin of Symbolic Logic, vol. 1 (1995), pp. 468–485.
[19]
Simpson, S., Subsystems of second order arithmetic, Springer-Verlag, Berlin, 1998.

[20]
Ye, F., Strict constructivism and the philosophy of mathematics, *
***Ph. D. Dissertation**
, Princeton University, 1999.

[1]
Feferman, Solomon, In the light of logic, Oxford University Press, New York, 1998.

[2]
Feferman, Solomon, Does mathematics need new axioms?, American Mathematical Monthly, vol. 106 (1999), pp. 99–111.

[3]
Gödel, Kurt, What is Cantor's continuum problem?, reprinted in his Collected works, volume II (Feferman, S.
et al., editors), Oxford University Press, New York, pp. 254–270, 1990.

[4]
Maddy, Penelope, Naturalism in mathematics, Oxford University Press, Oxford, 1997.

[5]
Maddy, Penelope, Some naturalistic reflections on set theoretic method, to appear in Topoi.

[6]
Maddy, Penelope, Naturalism and the a priori, to appear in New essays on the a priori (Boghossian, P. and Peakcocke, C., editors).

[7]
Maddy, Penelope, Naturalism: friends and foes, to appear in Philosophical Perspectives 15, Metaphysics 2001 (Tomberlin, J., editor).

[8]
Moore, Gregory, Zermelo's axiom of choice, Springer-Verlag, New York, 1982.

[1]
Gödel, Kurt F., What is Cantor's continuum problem?, American Mathematical Monthly, vol. 54 (1947), pp. 515–525.

[2]
Feferman, Solomon, Is Cantor necessary?, in In the light of logic, Oxford University Press, New York, 1998.

[3]
Foreman, Matthew, Magidor, Menachem, and Shelah, Saharon, Martin's maximum, saturated ideals, and non-regular ultrafilters, Annals of Mathematics, vol. 127 (1988), pp. 1–47.

[4]
Maddy, Penelope, Naturalism in mathematics, Oxford University Press, Oxford, 1997.

[5]
Martin, Donald A., Mathematical evidence, Truth in mathematics (Dales, H. G. and Oliveri, G., editors), Clarendon Press, Oxford, 1998, pp. 215–231.

[6]
Martin, Donald A. and Steel, John R., A proof of projective determinacy, Journal of the American Mathematical Society, vol. 2 (1989), pp. 71–125.

[7]
Martin, Donald A. and Steel, John R., Iteration trees, Journal of the American Mathematical Society, vol. 7 (1994), pp. 1–73.

[8]
Shelah, Saharon and Woodin, W. Hugh, Large cardinals imply that every reasonably definable set of reals is Lebesgue measurable, Israel Journal of Mathematics, vol. . 70 (1990), pp. 381–394.

[1]
Arnold, V., Atiyah, M., Lax, P., and Mazur, B., editors, Mathematics: Frontiers and perspectives, American Mathematical Society, 2000.

[2]
Browder, F., editor, Mathematics into the twenty-first century, American Mathematical Society Centennial Publications, Volume II, 1992.

[3]
Friedman, H., On the necessary use of abstract set theory, Advances in Mathematics, vol. 41 (09
1981), no. 3, pp. 209–280.

[4]
Friedman, H., Robertson, N., and Seymour, P., The metamathematics of the graph minor theorem, in Logic and combinatorics (Simpson, S., editor), American Mathematical Society Contemporary Mathematics Series, vol. 65, 1987, pp. 229–261.