Skip to main content
×
Home
    • Aa
    • Aa

Explicit Provability and Constructive Semantics

  • Sergei N. Artemov (a1) (a2)
Abstract
Abstract

In 1933 Gödel introduced a calculus of provability (also known as modal logic S4) and left open the question of its exact intended semantics. In this paper we give a solution to this problem. We find the logic LP of propositions and proofs and show that Gödel's provability calculus is nothing but the forgetful projection of LP. This also achieves Gödel's objective of defining intuitionistic propositional logic Int via classical proofs and provides a Brouwer-Heyting-Kolmogorov style provability semantics for Int which resisted formalization since the early 1930s. LP may be regarded as a unified underlying structure for intuitionistic, modal logics, typed combinatory logic and λ-calculus.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1] S. Allen , R. Constable , D. Howe , and W. Aitken , The semantics of reflected proofs, Proceedings of the fifth annual IEEE Symposium on Logic in Computer Science (Los Alamitos, California, USA), IEEE Computer Society Press, 1990, pp. 95107.

[6] S. Artemov , Logic of proofs, Annals of Pure and Applied Logic, vol. 67 (1994), no. 1, pp. 2959.

[18] J. Avigad and S. Feferman , Gödel's functional (“Dialectica”) interpretation, Handbook of proof theory ( S. Buss , editor), Elsevier, 1998, pp. 337406.

[21] G. Barthe , J. Hatcliff , and M. Sørensen , A notion of a classical pure type system, Electronic Notes in Theoretical Computer Science, vol. 6 (1997), Proceedings of MFPS'97. ( S. Brookes and M. Mislove , editors).

[23] L. Beklemishev , Parameter-free induction and provably total computable functions, Theoretical Computer Science, vol. 224 (1999), no. 1–2, pp. 1333.

[28] G. Boolos , The logic of provability, American Mathematical Monthly, vol. 91 (1984), pp. 470480.

[32] S. Buss , The modal logic of pure provability, Notre Dame Journal of Formal Logic, vol. 31 (1990), no. 2, pp. 225231.

[34] R. Constable , Types in logic, mathematics and programming, Handbook of proof theory ( S. Buss , editor), Elsevier, 1998, pp. 683786.

[35] H. B. Curry and R. Feys , Combinatory logic, North-Holland, Amsterdam, 1958.

[36] M. Davis and J. Schwartz , Metamathematical extensibility for theorem verifiers and proof checkers, Computers and Mathematics with Applications, vol. 5 (1979), pp. 217230.

[40] R. Flagg , Church's Thesis is consistent with epistemic arithmetic, Intensional mathematics ( S. Shapiro , editor), North-Holland, 1985, pp. 121172.

[41] R. Flagg and H. Friedman , Epistemic and intuitionistic formal systems, Annals of Pure and Applied Logic, vol. 32 (1986), no. 1, pp. 5360.

[45] K. Gödel , Über eine bisher noch nicht benütztwe Erweiterung des finiten Standpunktes, Dialectica, vol. 12 (1958), pp. 280287.

[47] R. Goldblatt , Arithmetical necessity, provability and intuitionistic logic, Theoria, vol. 44 (1978), pp. 3846.

[50] N. D. Goodman , A genuinely intensional set theory, Intensional mathematics ( S. Shapiro , editor), North-Holland, 1985, pp. 6379.

[53] A. Heyting , Die intuitionistische Grundlegung der Mathematik, Erkenntnis, vol. 2 (1931), pp. 106115.

[54] A. Heyting , Mathematische Grundlagenforschung. Intuitionismus. Beweistheorie, Springer-Verlag, Berlin, 1934.

[58] A. Kolmogoroff , Zur Deutung der intuitionistischen Logik, Mathematische Zeitschrift, vol. 35 (1932), pp. 5865, English translation in Selected works of A.N. Kolmogorov. Volume I: Mathematics and Mechanics, (V.M. Tikhomirov, editor).

[61] M. Kracht , Tools and techniques in modal logic, Elsevier, 1999.

[66] S. Kripke , Semantical analysis of intuitionistic logic. I, Formal systems and recursive functions. Proceedings of the 8th Logic Colloquium ( J. N. Crossley and M.A.E. Dummett , editors), North-Holland, 1965, pp. 92130.

[67] V. Krupski , Operational logic of proofs with functionality condition on proof predicate, Logical foundations of Computer Science '97, Yaroslavl' ( S. Adian and A. Nerode , editors), Lecture Notes in Computer Science, vol. 1234, Springer-Verlag, 1997, pp. 167177.

[68] V. Krupski , The single-conclusion proof logic and inference rules specification, Annals of Pure and Applied Logic, (to appear in 2001), in the volume on the conference St. Petersburg Days of Logic and Computability, 1999, (Yu. Matiyasevich, editor).

[76] J. C. C. McKinsey and A. Tarski , On closed elements of closure algebras, Annals of Mathematics, vol. 47 (1946), pp. 122162.

[79] E. Mendelson , Introduction to mathematical logic, Wadsworth, 1987.

[82] A. Mkrtychev , Models for the logic of proofs, Logical foundations of Computer Science '97, Yaroslavl' ( S. Adian and A. Nerode , editors), Lecture Notes in Computer Science, vol. 1234, Springer-Verlag, 1997, pp. 266275.

[84] J. Myhill , Some remarks on the notion of proof, Journal of Philosophy, vol. 57 (1960), pp. 461471.

[85] J. Myhill , Intensional set theory, Intensional mathematics ( S. Shapiro , editor), North-Holland, 1985, pp. 4761.

[88] M. Parigot , λü-calculus: an algorithmic interpretation of classical natural deduction, Proceedings of the international conference on logic programming and automated reasoning, Lecture Notes in Computer Science, vol. 624, Springer-Verlag, 1992, pp. 190201.

[93] A. Scedrov , Extending Gödel's modal interpretation to type theory and set theory, Intensional mathematics ( S. Shapiro , editor), North-Holland, 1985, pp. 81119.

[94] D. Scott , Constructive validity, Symposium on automatic demonstration ( M. Laudet , D. Lacombe , L. Nolin , and M. Schützenberger , editors), Lecture Notes in Mathematics, vol. 125, Springer-Verlag, Berlin, 1970, pp. 237275.

[95] S. Shapiro , Epistemic and intuitionistic arithmetic, Intensional mathematics ( S. Shapiro , editor), North-Holland, 1985, pp. 1146.

[96] S. Shapiro , Intensional mathematics and constructive mathematics, Intensional mathematics ( S. Shapiro , editor), North-Holland, 1985, pp. 110.

[97] T. Sidon , Provability logic with operations on proofs, Logical foundations of Computer Science '97, Yaroslavl' ( S. Adian and A. Nerode , editors), Lecture Notes in Computer Science, vol. 1234, Springer-Verlag, 1997, pp. 342353.

[98] C. Smoryński , Self-reference and modal logic, Springer-Verlag, Berlin, 1985.

[100] R. Solovay , Provability interpretations of modallogic, Israel Journal of Mathematics, vol. 25 (1976), pp. 287304.

[106] A.S. Troelstra , Realizability, Handbook of proof theory ( S. Buss , editor), Elsevier, 1998, pp. 407474.

[111] D. van Dalen , Logic and structure, Springer-Verlag, 1994.

[114] S. Weinstein , The intended interpretation of intuitionistic logic, Journal of Philosophical Logic, vol. 12 (1983), pp. 261270.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Symbolic Logic
  • ISSN: 1079-8986
  • EISSN: 1943-5894
  • URL: /core/journals/bulletin-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 6 *
Loading metrics...

Abstract views

Total abstract views: 177 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 29th May 2017. This data will be updated every 24 hours.