Home

Explicit Provability and Constructive Semantics

Abstract

In 1933 Gödel introduced a calculus of provability (also known as modal logic S4) and left open the question of its exact intended semantics. In this paper we give a solution to this problem. We find the logic LP of propositions and proofs and show that Gödel's provability calculus is nothing but the forgetful projection of LP. This also achieves Gödel's objective of defining intuitionistic propositional logic Int via classical proofs and provides a Brouwer-Heyting-Kolmogorov style provability semantics for Int which resisted formalization since the early 1930s. LP may be regarded as a unified underlying structure for intuitionistic, modal logics, typed combinatory logic and λ-calculus.

References

Hide All
[1] Allen, S., Constable, R., Howe, D., and Aitken, W., The semantics of reflected proofs, Proceedings of the fifth annual IEEE Symposium on Logic in Computer Science (Los Alamitos, California, USA), IEEE Computer Society Press, 1990, pp. 95107.
[2] Alt, J. and Artemov, S., Reflective λ-calculus, Technical Report CFIS 2000-06, Cornell University, 2000.
[3] Artemov, S., Applications of modal logic in proof theory, Voprosy Kibernetiki: Nonclassical logics and application, Nauka, Moscow, 1982, (in Russian), pp. 320.
[4] Artemov, S., Non-arithmeticity of truth predicate logics of provability, Soviet Mathematics Doklady, vol. 32 (1985), no. 2, pp. 403405.
[5] Artemov, S., Kolmogorov logic of problems and a provability interpretation of intuitionistic logic, Theoretical aspects of reasoning about knowledge—III Proceedings, Morgan Kaufman Pbl., 1990, pp. 257272.
[6] Artemov, S., Logic of proofs, Annals of Pure and Applied Logic, vol. 67 (1994), no. 1, pp. 2959.
[7] Artemov, S., Operational modal logic, Technical Report MSI 95-29, Cornell University, 1995.
[8] Artemov, S., Proof realizations of typed λ-calculi, Technical Report MSI 95-02, Cornell University, 1997.
[9] Artemov, S., Logic of proofs: a unified semantics for modality and λ-terms, Technical Report CFIS 98-06, Cornell University, 1998.
[10] Artemov, S., On explicit reflection in theorem proving and formal verification, Automated deduction—CADE-16. Proceedings of the 16th International Conference on Automated Deduction, Trento, Italy, July 1999, Lecture Notes in Artificial Intelligence, vol. 1632, Springer-Verlag, 1999, pp. 267281.
[11] Artemov, S., Operations on proofs that can be specified by means of modal logic, Advances in modal logic, vol. 2, CSLI Publications, Stanford University, 2001.
[12] Artemov, S., Unified semantics for modality and λ-terms via proof polynomials, Logic, Language and Computation. Volume 3, CSLI Publications, Stanford University, (to appear).
[13] Artemov, S., Kazakov, E., and Shapiro, D., Epistemic logic with justifications, Technical Report CFIS 99-12, Cornell University, 1999.
[14] Artemov, S. and Montagna, F., On first order theories with provability operator, The Journal of Symbolic Logic, vol. 59 (1994), no. 4, pp. 11391153.
[15] Artemov, S. and Sidon-Yavorskaya, T., On the first order logic of proofs, Technical Report CFIS99-11, Cornell University, 1999.
[16] Artemov, S. and Strassen, T., Functionality in the basic logic of proofs, Technical Report IAM 92-004, Department of Computer Science, University of Bern, Switzerland, 1992.
[17] Artemov, S. and Strassen, T., The logic of the Gödel proof predicate, Computational logic and proof theory. Proceedings of the Third Kurt Gödel Colloquium, Brno, August 1993 (Gottlob, G., Leitsch, A., and Mundici, D., editors), Lecture Notes in Computer Science, vol. 713, Springer-Verlag, 1993, pp. 7182.
[18] Avigad, J. and Feferman, S., Gödel's functional (“Dialectica”) interpretation, Handbook of proof theory (Buss, S., editor), Elsevier, 1998, pp. 337406.
[19] Avron, A., On modal systems having arithmetical interpretation, The Journal of Symbolic Logic, vol. 49 (1984), pp. 935942.
[20] Barendregt, H., Lambda calculi with types, Handbook of logic in computer science (Abramsky, S., Gabbay, D.M., and Maibaum, T.S.E., editors), vol. 2, Oxford University Press, 1992, pp. 118309.
[21] Barthe, G., Hatcliff, J., and Sørensen, M., A notion of a classical pure type system, Electronic Notes in Theoretical Computer Science, vol. 6 (1997), Proceedings of MFPS'97. (Brookes, S. and Mislove, M., editors).
[22] Beeson, M., Foundations of constructive mathematics, Springer-Verlag, 1980.
[23] Beklemishev, L., Parameter-free induction and provably total computable functions, Theoretical Computer Science, vol. 224 (1999), no. 1–2, pp. 1333.
[24] Beth, E.W., Semantic construction of intuitionistic logic, Kon. Nederl. Akad. Wetensch. Afd. Let. Med., Nieuwe Serie, vol. 19/11 (1956), pp. 357388.
[25] Bierman, G. and de Paiva, V., Intuitionistic necessity revisited, Proceedings of the Logic at Work conference, Amsterdam, 1992, 1996, Second revision, http://theory.doc.ic.ac.uk/tfm/papers.html.
[26] Birkhoff, G., On the structure of abstract algebras, Proceedings of the Cambridge Philosophical Society, vol. 31 (1935), pp. 433454.
[27] Boolos, G., The unprovability of consistency: An essay in modal logic, Cambridge University Press, 1979.
[28] Boolos, G., The logic of provability, American Mathematical Monthly, vol. 91 (1984), pp. 470480.
[29] Boolos, G., The logic of provability, Cambridge University Press, 1993.
[30] Borghuis, V. A. J., Coming to terms with modal logic: On the interpretation of modalities in typed λ-calculus, Ph.D. thesis , Technische Universiteit Eindhoven, 1994.
[31] Brezhnev, V., On explicit counterparts of modal logics, Technical Report CFIS2000-05, Cornell University, 2000.
[32] Buss, S., The modal logic of pure provability, Notre Dame Journal of Formal Logic, vol. 31 (1990), no. 2, pp. 225231.
[33] Chagrov, A. and Zakharyaschev, M., Modal logic, Oxford Science Publications, 1997.
[34] Constable, R., Types in logic, mathematics and programming, Handbook of proof theory (Buss, S., editor), Elsevier, 1998, pp. 683786.
[35] Curry, H. B. and Feys, R., Combinatory logic, North-Holland, Amsterdam, 1958.
[36] Davis, M. and Schwartz, J., Metamathematical extensibility for theorem verifiers and proof checkers, Computers and Mathematics with Applications, vol. 5 (1979), pp. 217230.
[37] de Jongh, D. and Japaridze, G., Logic of provability, Handbook of proof theory (Buss, S., editor), Elsevier, 1998, pp. 475546.
[38] Feferman, S., A language and axioms for explicit mathematics, Algebra and logic (Crossley, J. N., editor), Springer-Verlag, 1975, pp. 87139.
[39] Feferman, S., Constructive theories of functions and classes, Logic colloquium '78 (Boffa, M., van Dalen, D., and McAloon, K., editors), North-Holland, 1979, pp. 159224.
[40] Flagg, R., Church's Thesis is consistent with epistemic arithmetic, Intensional mathematics (Shapiro, S., editor), North-Holland, 1985, pp. 121172.
[41] Flagg, R. and Friedman, H., Epistemic and intuitionistic formal systems, Annals of Pure and Applied Logic, vol. 32 (1986), no. 1, pp. 5360.
[42] Gabbay, D. M., Labelled deductive systems, Oxford University Press, 1994.
[43] Girard, J.-Y., Lafont, Y., and Taylor, P., Proofs and types, Cambridge University Press, 1989.
[44] Gödel, K., Eine Interpretation des intuitionistischen Aussagenkalküls, Ergebnisse Math. Colloq., vol. 4 (1933), pp. 3940.
[45] Gödel, K., Über eine bisher noch nicht benütztwe Erweiterung des finiten Standpunktes, Dialectica, vol. 12 (1958), pp. 280287.
[46] Gödel, K., Vortrag bei Zilsel, 1938, Kurt Gödel Collected Works (Feferman, S., editor), vol. III, Oxford University Press, 1995, pp. 86113.
[47] Goldblatt, R., Arithmetical necessity, provability and intuitionistic logic, Theoria, vol. 44 (1978), pp. 3846.
[48] Goldblatt, R., Topoi, North-Holland, 1979.
[49] Goodman, N. D., Epistemic arithmetic is a conservative extension of intuitionistic arithmetic, The Journal of Symbolic Logic, vol. 49 (1984), pp. 192203.
[50] Goodman, N. D., A genuinely intensional set theory, Intensional mathematics (Shapiro, S., editor), North-Holland, 1985, pp. 6379.
[51] Goodman, N.D., A theory of constructions is equivalent to arithmetic, Intuitionism and proof theory (Myhill, J., Kino, A., and Vesley, R. E., editors), North-Holland, 1970, pp. 101120.
[52] Heyting, A., Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der Preussischen Akademie von Wissenschaften. Physikalisch-mathematische Klasse, (1930), pp. 4256.
[53] Heyting, A., Die intuitionistische Grundlegung der Mathematik, Erkenntnis, vol. 2 (1931), pp. 106115.
[54] Heyting, A., Mathematische Grundlagenforschung. Intuitionismus. Beweistheorie, Springer-Verlag, Berlin, 1934.
[55] Hintikka, J., Knowledge and Belief, Cornell University Press, Ithaca, 1962.
[56] Kleene, S., On the interpretation of intuitionistic number theory, The Journal of Symbolic Logic, vol. 10 (1945), no. 4, pp. 109124.
[57] Kleene, S., Classical extensions of intuitionistic mathematics, Logic, methodology and philosophy of science 2 (Bar-Hillel, Y., editor), North-Holland, 1965, pp. 3144.
[58] Kolmogoroff, A., Zur Deutung der intuitionistischen Logik, Mathematische Zeitschrift, vol. 35 (1932), pp. 5865, English translation in Selected works of A.N. Kolmogorov. Volume I: Mathematics and Mechanics , (V.M. Tikhomirov, editor).
[59] Kolmogorov, A., About my papers on intuitionistic logic, Selected works of A. N. Kolmogorov. Volume I: Mathematics and mechanics (Tikhomirov, V. M., editor), Kluwer, 1985, pp. 451452.
[60] Kozen, D. and Tiuryn, J., Logic of programs, Handbook of theoretical computer science. Volume B, Formal models and semantics (Leeuwen, J. van, editor), Elsevier, 1990, pp. 789840.
[61] Kracht, M., Tools and techniques in modal logic, Elsevier, 1999.
[62] Kreisel, G., Foundations of intuitionistic logic, Logic, methodology and philosophy of science. Proceedings of the 1960 International Congress (Nagel, E., Suppes, P., and Tarski, A., editors), Stanford University Press, 1962, pp. 198210.
[63] Kreisel, G., On weak completeness of intuitionistic predicate logic, The Journal of Symbolic Logic, vol. 27 (1962), pp. 139158.
[64] Kreisel, G., Mathematical logic, Lectures in Modern Mathematics III (Saaty, T. L., editor), Wiley and Sons, New York, 1965, pp. 95195.
[65] Kripke, S., Semantical considerations on modal logic, Acta Philosophica Fennica, vol. 16 (1963), pp. 8394.
[66] Kripke, S., Semantical analysis of intuitionistic logic. I, Formal systems and recursive functions. Proceedings of the 8th Logic Colloquium (Crossley, J. N. and Dummett, M.A.E., editors), North-Holland, 1965, pp. 92130.
[67] Krupski, V., Operational logic of proofs with functionality condition on proof predicate, Logical foundations of Computer Science '97, Yaroslavl' (Adian, S. and Nerode, A., editors), Lecture Notes in Computer Science, vol. 1234, Springer-Verlag, 1997, pp. 167177.
[68] Krupski, V., The single-conclusion proof logic and inference rules specification, Annals of Pure and Applied Logic, (to appear in 2001), in the volume on the conference St. Petersburg Days of Logic and Computability, 1999 , (Yu. Matiyasevich, editor).
[69] Kuznets, A., On the complexity of explicit modal logics, Computer Science Logic 2000, Lecture Notes in Computer Science, vol. 1862, Springer-Verlag, 2000, pp. 371383.
[70] Kuznetsov, A. and Muravitsky, A., The logic of provability, Abstracts of the 4th All-union conference on mathematical logic, 1976, in Russian, p. 73.
[71] Läuchli, H., An abstract notion of realizability for which intuitionistic predicate logic is complete, Intuitionism and proof theory (Myhill, J., Kino, A., and Vesley, R. E., editors), North-Holland, 1970, pp. 227234.
[72] Lemmon, E., New foundations for Lewis's modal systems, The Journal of Symbolic Logic, vol. 22 (1957), pp. 176186.
[73] Martin-Löf, P., Constructive mathematics and computer programming, Logic, methodology and philosophy of science VI (Cohen, L. J., Løs, J., Pffeifer, H., and Podewski, K.-P., editors), North-Holland, 1982, pp. 153175.
[74] Martin-Löf, P., Intuitionistic type theory, Bibliopolis, Naples, 1984.
[75] Martini, S. and Masini, A., A computational interpretation of modal proofs, Proof theory of modal logics. workshop proceedings (Wansing, H., editor), Kluwer, 1994.
[76] McKinsey, J. C. C. and Tarski, A., On closed elements of closure algebras, Annals of Mathematics, vol. 47 (1946), pp. 122162.
[77] McKinsey, J. C. C. and Tarski, A., Some theorems about the sentential calculi of Lewis and Heyting, The Journal of Symbolic Logic, vol. 13 (1948), pp. 115.
[78] Medvedev, Yu., Finite problems, Soviet Mathematics Doklady, vol. 3 (1962), pp. 227230.
[79] Mendelson, E., Introduction to mathematical logic, Wadsworth, 1987.
[80] Mints, G., Lewis' systems and system T (a survey 1965–1973)., Feys. Modal logic (Russian translation), Nauka, Moscow, 1974, (in Russian). English translation in G. Mints, Selected papers in proof theory , Bibliopolis, Napoli, 1992, pp. 422–509.
[81] Mints, G., On Novikov's hypothesis, Modal and intensional logics, Nauka, Moscow, 1978, (in Russian). English translation in G. Mints, Selected papers in proof theory , Bibliopolis, Napoli, 1992.
[82] Mkrtychev, A., Models for the logic of proofs, Logical foundations of Computer Science '97, Yaroslavl' (Adian, S. and Nerode, A., editors), Lecture Notes in Computer Science, vol. 1234, Springer-Verlag, 1997, pp. 266275.
[83] Montague, R., Syntactical treatments of modality with corollaries on reflection principles and finite axiomatizability, Acta Philosophica Fennica, vol. 16 (1963), pp. 153168.
[84] Myhill, J., Some remarks on the notion of proof, Journal of Philosophy, vol. 57 (1960), pp. 461471.
[85] Myhill, J., Intensional set theory, Intensional mathematics (Shapiro, S., editor), North-Holland, 1985, pp. 4761.
[86] Novikov, P. S., Constructive mathematical logic from the viewpoint of the classical one, Nauka, Moscow, 1977, (in Russian).
[87] Orlov, I. E., The calculus of compatibility of propositions, Matematicheskii Sbornik, vol. 35 (1928), pp. 263286, (in Russian).
[88] Parigot, M., λü-calculus: an algorithmic interpretation of classical natural deduction, Proceedings of the international conference on logic programming and automated reasoning, Lecture Notes in Computer Science, vol. 624, Springer-Verlag, 1992, pp. 190201.
[89] Parigot, M., Strong normalization for second order classical natural deduction, Proceedings of the 8th annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, 1993, pp. 3946.
[90] Parsons, C. and Sieg, W., Introductory note to [44], Kurt Gödel Collected Works. Volume III (Feferman, S., editor), Oxford University Press, 1995, pp. 6285.
[91] Pfenning, F. and Wong, H. C., On a modal lambda-calculus for S4 , Electronic Notes in Computer Science, vol. 1 (1995).
[92] Rasiowa, H. and Sikorski, R., The mathematics of metamathematics, Polish Scientific Publishers, 1963.
[93] Scedrov, A., Extending Gödel's modal interpretation to type theory and set theory, Intensional mathematics (Shapiro, S., editor), North-Holland, 1985, pp. 81119.
[94] Scott, D., Constructive validity, Symposium on automatic demonstration (Laudet, M., Lacombe, D., Nolin, L., and Schützenberger, M., editors), Lecture Notes in Mathematics, vol. 125, Springer-Verlag, Berlin, 1970, pp. 237275.
[95] Shapiro, S., Epistemic and intuitionistic arithmetic, Intensional mathematics (Shapiro, S., editor), North-Holland, 1985, pp. 1146.
[96] Shapiro, S., Intensional mathematics and constructive mathematics, Intensional mathematics (Shapiro, S., editor), North-Holland, 1985, pp. 110.
[97] Sidon, T., Provability logic with operations on proofs, Logical foundations of Computer Science '97, Yaroslavl' (Adian, S. and Nerode, A., editors), Lecture Notes in Computer Science, vol. 1234, Springer-Verlag, 1997, pp. 342353.
[98] Smoryński, C., Self-reference and modal logic, Springer-Verlag, Berlin, 1985.
[99] Smullyan, R., Diagonalization and self-reference, Oxford University Press, 1994.
[100] Solovay, R., Provability interpretations of modallogic, Israel Journal of Mathematics, vol. 25 (1976), pp. 287304.
[101] Takeuti, G., Proof theory, North-Holland, 1975.
[102] Troelstra, A., The scientific work of A. Heyting, Logic and foundations of mathematics (Dalen, D. van et al., editors), Wolters-Noordhoff Publishing, 1968, pp. 1146.
[103] Troelstra, A., Introductory note to [44], Kurt Gödel Collected Works. Volume I (Feferman, S., editor), Oxford University Press, 1986, pp. 296299.
[104] Troelstra, A. and Schwichtenberg, H., Basic proof theory, Cambridge University Press, Amsterdam, 1996.
[105] Troelstra, A. and van Dalen, D., Constructivism in mathematics. An introduction, vol. 1, North-Holland, Amsterdam, 1988.
[106] Troelstra, A.S., Realizability, Handbook of proof theory (Buss, S., editor), Elsevier, 1998, pp. 407474.
[107] Uspensky, V. and Plisko, V., Intuitionistic logic. commentary on [58] and [59], Selected works of A. N. Kolmogorov. Volume I: Mathematics and Mechanics (Tikhomirov, V. M., editor), Kluwer, 1985, pp. 452466.
[108] Uspensky, V.A., Kolmogorov and mathematical logic, The Journal of Symbolic Logic, vol. 57 (1992), no. 2, pp. 385412.
[109] van Benthem, J., Reflections on epistemic logic, Logique & Analyse, vol. 133-134 (1991), pp. 514.
[110] van Dalen, D., Intuitionistic logic, Handbook of philosophical logic (Gabbay, D. and Guenther, F., editors), vol. 3, Reidel, 1986, pp. 225340.
[111] van Dalen, D., Logic and structure, Springer-Verlag, 1994.
[112] Vardanyan, V., Arithmetic complexity of predicate logics of provability and their fragments, Soviet Mathematics Doklady, vol. 33 (1986), pp. 569572.
[113] Visser, A., An overview of interpretability logic, Advances in modal logic (Kracht, M., de Rijke, M., and Wansing, H., editors), vol. 1, CSLI Publications, Stanford University, 1996, pp. 307360.
[114] Weinstein, S., The intended interpretation of intuitionistic logic, Journal of Philosophical Logic, vol. 12 (1983), pp. 261270.
[115] Sidon, T. Yavorskaya, Logics of proofs and provability, Annals of pure and applied logic, (to appear in 2001), in the volume on the conference St. Petersburg Days of Logic and Computability, 1999 , (Yu. Matiyasevich, editor).
[116] Yavorsky, R., On the logic of the standard proof predicate, Computer Science Logic 2000, Lecture Notes in Computer Science, vol. 1862, Springer-Verlag, 2000, pp. 527541.

Explicit Provability and Constructive Semantics

Metrics

Full text viewsFull text views reflects the number of PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 0 *