Skip to main content Accessibility help
×
Home

FOUNDATIONS OF ONLINE STRUCTURE THEORY

  • NIKOLAY BAZHENOV (a1), ROD DOWNEY (a2), ISKANDER KALIMULLIN (a3) and ALEXANDER MELNIKOV (a4)

Abstract

The survey contains a detailed discussion of methods and results in the new emerging area of online “punctual” structure theory. We also state several open problems.

Copyright

References

Hide All
[1]Alaev, P. E., Atomless Boolean algebras computable in polynomial time. Siberian Electronic Mathematical Reports, vol. 13 (2016), pp. 10351039.
[2]Alaev, P. E., Structures computable in polynomial time. I. Algebra Logic, vol. 55 (2017), no. 6, pp. 421435.
[3]Alaev, P. E., Structures computable in polynomial time. II. Algebra Logic, vol. 56 (2018), no. 6, pp. 429442.
[4]Ash, C. and Knight, J., Computable Structures and the Hyperarithmetical Hierarchy, North-Holland, Amsterdam, 2000.
[5]Bazhenov, N., Harrison-Trainor, M., Kalimullin, I., Melnikov, A., and Ng, K. M., Automatic and polynomial-time algebraic structures. The Journal of Symbolic Logic, to appear.
[6]Bazhenov, N., Kalimullin, I., Melnikov, A., and Ng, K. M., Punctual presentations of finitely generated structures, submitted.
[7]Borel, É., Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del Circolo Matematico di Palermo, vol. 27 (1909), no. 1, pp. 247271.
[8]Borodin, A. and El-Yaniv, R., Online Computation and Competitive Analysis, Cambridge University Press, New York, 1998.
[9]Cenzer, D. A., Downey, R. G., Remmel, J. B., and Uddin, Z., Space complexity of abelian groups. Archive for Mathematical Logic, vol. 48 (2009), no. 1, pp. 115140.
[10]Cenzer, D. A. and Remmel, J. B., Polynomial-time versus recursive models. Annals of Pure and Applied Logic, vol. 54 (1991), no. 1, pp. 1758.
[11]Cenzer, D. A. and Remmel, J. B., Polynomial-time abelian groups. Annals of Pure and Applied Logic, vol. 56 (1992), no. 1–3, pp. 313363.
[12]Cenzer, D. A. and Remmel, J. B., Complexity theoretic model theory and algebra, Handbook of Recursive Mathematics, vol. 1 (Ershov, Y. L., Goncharov, S. S., Nerode, A., and Remmel, J. B., editors), Studies in Logic and the Foundations of Mathematics, vol. 138, North-Holland, Amsterdam, 1998, pp. 381513.
[13]Church, A., On the concept of a random sequence. Bulletin of the American Mathematical Society, vol. 46 (1940), no. 2, pp. 130135.
[14]Dedekind, R., Was sind und was sollen die Zahlen? 8te unveränderte Aufl, Friedr. Vieweg & Sohn, Braunschweig, 1960.
[15]Dehn, M., Über unendliche diskontinuierliche Gruppen. Mathematische Annalen, vol. 71 (1911), no. 1, pp. 116144.
[16]Dobritsa, V. P., Some constructivizations of abelian groups. Siberian Mathematical Journal, vol. 24 (1983), no. 2, pp. 167173.
[17]Downey, R., Computability theory and linear orderings, Handbook of Recursive Mathematics, vol. 2 (Ershov, Yu. L., Goncharov, S. S., Nerode, A., Remmel, J. B., and Marek, V. W., editors), Studies in Logic and the Foundations of Mathematics, vol. 139, North-Holland, Amsterdam, 1998, pp. 823976.
[18]Downey, R., Turing and randomness, The Turing Guide (Copeland, B. J., Bowen, J. P., Sprevak, M., and Wilson, R., editors), Oxford University Press, Oxford, 2017, pp. 427436.
[19]Downey, R., Harrison-Trainor, M., Kalimullin, I., Melnikov, A., and Turetsky, D., Graphs are not universal for online computablility, preprint.
[20]Downey, R., Hirschfeldt, D., and Khoussainov, B., Uniformity in the theory of computable structures. Algebra Logika, vol. 42 (2003), no. 5, pp. 566593, 637.
[21]Downey, R. G., Kach, A. M., Lempp, S., Lewis-Pye, A. E. M., Montalbán, A., and Turetsky, D. D., The complexity of computable categoricity. Advances in Mathematics, vol. 268 (2015), pp. 423466.
[22]Downey, R. G. and McCartin, C., Some new directions and questions in parameterized complexity, Developments in Language Theory (Calude, C. S., Calude, E., and Dinneen, M. J., editors), Lecture Notes in Computer Science, vol. 3340, Springer, Berlin, 2004, pp. 1226.
[23]Epstein, D. B. A., Cannon, J. W., Holt, D. F., Levy, S. V. F., Paterson, M. S., and Thurston, W. P., Word Processing in Groups, Jones and Bartlett Publishers, Boston, MA, 1992.
[24]Ershov, Y. and Goncharov, S., Constructive Models, Siberian School of Algebra and Logic, Consultants Bureau, New York, 2000.
[25]Ershov, Y. L., Goncharov, S. S., Nerode, A., Remmel, J. B., and Marek, V. W. (eds.), Handbook of Recursive Mathematics, vol. 2, Studies in Logic and the Foundations of Mathematics, vol. 139, North-Holland, Amsterdam, 1998.
[26]Fröhlich, A. and Shepherdson, J., Effective procedures in field theory. Philosophical Transactions of the Royal Society of London. Series A, vol. 248 (1956), pp. 407432.
[27]Garey, M. R. and Johnson, D. S., Computers and Intractability. A Guide to the Theory of NP-completeness, A Series of Books in the Mathematical Sciences, W. H. Freeman and Co., San Francisco, CA, 1979.
[28]Goncharov, S., Countable Boolean Algebras and Decidability, Siberian School of Algebra and Logic, Consultants Bureau, New York, 1997.
[29]Goncharov, S. S. and Nurtazin, A. T., Constructive models of complete solvable theories. Algebra Logic, vol. 12 (1973), no. 2, pp. 6777.
[30]Grigorieff, S., Every recursive linear ordering has a copy in DTIME-SPACE(n, log(n)). The Journal of Symbolic Logic, vol. 55 (1990), no. 1, pp. 260276.
[31]Harizanov, V. S., Pure computable model theory, Handbook of Recursive Mathematics, vol. 1 (Ershov, Y. L., Goncharov, S. S., Nerode, A., and Remmel, J. B., editors), Studies in Logic and the Foundations of Mathematics, vol. 138, North-Holland, Amsterdam, 1998, pp. 3114.
[32]Harrington, L., Recursively presentable prime models. The Journal of Symbolic Logic, vol. 39 (1974), pp. 305309.
[33]Harrison-Trainor, M., Melnikov, A., Miller, R., and Montalbán, A., Computable functors and effective interpretability. The Journal of Symbolic Logic, vol. 82 (2017), no. 1, pp. 7797.
[34]Hermann, G., Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Mathematische Annalen, vol. 95 (1926), no. 1, pp. 736788.
[35]Kalimullin, I., Melnikov, A., and Ng, K. M., Algebraic structures computable without delay. Theoretical Computer Science, vol. 674 (2017), pp. 7398.
[36]Kalimullin, I. S., Melnikov, A. G., and Ng, K. M., Different versions of categoricity without delays. Algebra Logika, vol. 56 (2017), no. 2, pp. 256266.
[37]Kalimullin, I. S., Melnikov, A. G., and Ng, K. M., The diversity of categoricity without delay. Algebra Logic, vol. 56 (2017), no. 2, pp. 171177.
[38]Kalimullin, I., Melnikov, A., and Zubkov, M., Punctual degrees and lattice embeddings, preprint.
[39]Kharlampovich, O., Khoussainov, B., and Miasnikov, A., From automatic structures to automatic groups. Groups, Geometry, and Dynamics, vol. 8 (2014), pp. 157198.
[40]Khoussainov, B., A quest for algorithmically random infinite structures, Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), Association for Computing Machinery, New York, 2014, p. 56, Article No. 9.
[41]Khoussainov, B. and Nerode, A., Automatic presentations of structures, Logic and Computational Complexity (Indianapolis, IN, 1994) (Leivant, D., editor), Lecture Notes in Computer Science, vol. 960, Springer, Berlin, 1995, pp. 367392.
[42]Kierstead, H. A., An effective version of Dilworth’s theorem. Transactions of the American Mathematical Society, vol. 268 (1981), pp. 6377.
[43]Kierstead, H. A., On line coloring k-colorable graphs. Israel Journal of Mathematics, vol. 105 (1998), no. 1, pp. 93104.
[44]Kierstead, H. A., Recursive and on-line graph coloring, Handbook of Recursive Mathematics, vol. 2 (Ershov, Y. L., Goncharov, S. S., Nerode, A., and Remmel, J. B., editors), Studies in Logic and the Foundations of Mathematics, vol. 139, North-Holland, Amsterdam, 1998, pp. 12331269.
[45]Kierstead, H. A., Penrice, S. G., and Trotter, W. T. Jr., On-line coloring and recursive graph theory. SIAM Journal on Discrete Mathematics, vol. 7 (1994), pp. 7289.
[46]Ko, K.-I. and Friedman, H., Computational complexity of real functions. Theoretical Computer Science, vol. 20 (1982), no. 3, pp. 323352.
[47]Lovász, L., Saks, M., and Trotter, W. T. Jr., An on-line graph coloring algorithm with sublinear performance ratio. Discrete Mathematics, vol. 75 (1989), pp. 319325.
[48]Macpherson, D., A survey of homogeneous structures. Discrete Mathematics, vol. 311 (2011), no. 15, pp. 15991634
[49]Mal′cev, A., Constructive algebras. I. Uspekhi Matematicheskikh Nauk, vol. 16 (1961), no. 3(99), pp. 360.
[50]Mal′cev, A., On recursive abelian groups. Doklady Akademii Nauk SSSR, vol. 146 (1962), pp. 10091012.
[51]Melnikov, A. G., Eliminating unbounded search in computable algebra, Unveiling Dynamics and Complexity (Kari, J., Manea, F., and Petre, I., editors), Lecture Notes in Computer Science, Springer, Cham, 2017, pp. 7787.
[52]Melnikov, A. G. and Ng, K. M., The back-and-forth method and computability without delay. Israel Journal of Mathematics, in press.
[53]Metakides, G. and Nerode, A., Effective content of field theory. Annals of Mathematical Logic, vol. 17 (1979), no. 3, pp. 289320.
[54]Metakides, G. and Nerode, A., The introduction of nonrecursive methods into mathematics, The L. E. J. Brouwer Centenary Symposium (Noordwijkerhout, 1981) (Troelstra, A. S. and van Dalen, D., editors), Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1982, pp. 319335.
[55]Millar, T., Omitting types, type spectrums, and decidability. The Journal of Symbolic Logic, vol. 48 (1983), no. 1, pp. 171181.
[56]von Mises, R., Grundlagen der Wahrscheinlichkeitsrechnung. Mathematische Zeitschrift, vol. 5 (1919), no. 1–2, pp. 5299.
[57]Osherson, D., Stob, M., and Weinstein, S., Systems that Learn, MIT Press, Cambridge, MA, 1986.
[58]Remmel, J. B., Graph colorings and recursively bounded ${\rm{\Pi }}_1^0$-classes. Annals of Pure and Applied Logic, vol. 32 (1986), pp. 185194.
[59]Tait, W. W., Finitism. The Journal of Philosophy, vol. 78 (1981), pp. 524546.
[60]Tsankov, T., The additive group of the rationals does not have an automatic presentation. Journal of Symbolic Logic, vol. 76 (2011), no. 4, pp. 13411351.
[61]Turing, A. M., On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, vol. 42 (1936), pp. 230265.
[62]Weihrauch, K., Computable Analysis, Texts in Theoretical Computer Science, An EATCS Series, Springer-Verlag, Berlin, 2000.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed