Skip to main content
×
×
Home

A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES

  • ROD DOWNEY (a1) and NOAM GREENBERG (a2)
Abstract

We introduce a new hierarchy of computably enumerable degrees. This hierarchy is based on computable ordinal notations measuring complexity of approximation of ${\rm{\Delta }}_2^0$ functions. The hierarchy unifies and classifies the combinatorics of a number of diverse constructions in computability theory. It does so along the lines of the high degrees (Martin) and the array noncomputable degrees (Downey, Jockusch, and Stob). The hierarchy also gives a number of natural definability results in the c.e. degrees, including a definable antichain.

Copyright
References
Hide All
[1]Afshari, B., Barmpalias, G., Cooper, S. B., and Stephan, F., Post’s programme for the Ershov hierarchy. Journal of Logic and Computation, vol. 17 (2007), no. 6, pp. 10251040.
[2]Ambos-Spies, K., Downey, R. G., and Monath, M., On the Sacks splitting theorem and approximating computations, in preparation.
[3]Ambos-Spies, K., Fang, N., Losert, N., Merkle, W., and Monath, M., Array noncomputability: A modular approach, in preparation.
[4]Ambos-Spies, K. and Fejer, P. A., Embeddings of N5 and the contiguous degrees.Annals of Pure and Applied Logic, vol. 112 (2001), no. 2–3, pp. 151188.
[5]Ambos-Spies, K., Jockusch, C. G. Jr., Shore, R A., and Soare, R. I., An algebraic decomposition of the recursively enumerable degrees and the coincidence of several degree classes with the promptly simple degrees.Transactions of the American Mathematical Society, vol. 281 (1984), no. 1, pp. 109128.
[6]Ambos-Spies, K. and Losert, N., Universally array noncomputable sets, in preparation.
[7]Ambos-Spies, K., Losert, N., and Monath, M., Array noncomputable left-c.e. reals, in preparation.
[8]Anderson, B. and Csima, B., A bounded jump for the bounded Turing degrees.Notre Dame Journal of Formal Logic, vol. 55 (2014), no. 2, pp. 245264.
[9]Arthur, K., Maximality in the α-c.a. degrees, Master’s thesis, Victoria University of Wellington, 2016.
[10]Arthur, K., Downey, R. G., Greenberg, N., and Turetsky, D., The distribution of maximality in the totally α-c.a. degrees, submitted.
[11]Barmpalias, G., Hypersimplicity and semicomputability in the weak truth table degrees. Archive for Mathematical Logic, vol. 44 (2005), no. 8, pp. 10451065.
[12]Barmpalias, G. and Downey, R. G., Kobayashi compressibility. Theoretical Computer Science, vol. 675 (2017), pp. 89100.
[13]Barmpalias, G., Downey, R. G., and Greenberg, N., Working with strong reducibilities above totally ω-c.e. and array computable degrees. Transactions of the American Mathematical Society, vol. 362 (2010), no. 2, pp. 777813.
[14]Barmpalias, G., Downey, R. G., and McInerney, M., Integer valued betting strategies and Turing degrees. Journal of Computer and System Sciences, vol. 81 (2015), no. 7, pp. 13871412.
[15]Barmpalias, G., Lewis, A. E. M., and Ng, K. M., The importance of ${\rm{\Pi }}_1^0$ classes in effective randomness. Journal of Symbolic Logic, vol. 75 (2010), no. 1, pp. 387400.
[16]Bickford, M. and Mills, C. F., Lowness properties of r.e. sets, manuscript, UW Madison, 1982.
[17]Brodhead, P., Downey, R., and Ng, K. M., Bounded randomness, Computation, Physics and Beyond (Dinneen, M. J., Khoussainov, B., and Nies, A., editors), Lecture Notes in Computer Science, vol. 7160, Springer, Heidelberg, 2012, pp. 5970.
[18]Chisholm, J., Chubb, J., Harizanov, V. S., Hirschfeldt, D. R., Jockusch, C. G. Jr., McNicholl, T., and Pingrey, S., ${\rm{\Pi }}_1^0$ classes and strong degree spectra of relations. Journal of Symbolic Logic, vol. 72 (2007), no. 3, pp. 10031018.
[19]Cholak, P., Coles, R., Downey, R. G., and Herrmann, E., Automorphisms of the lattice of ${\rm{\Pi }}_1^0$ classes: Perfect thin classes and anc degrees. Transactions of the American Mathematical Society, vol. 353 (2001), no. 12, pp. 48994924.
[20]Cholak, P., Downey, R. G., and Walk, S., Maximal contiguous degrees. Journal of Symbolic Logic, vol. 67 (2002), no. 1, pp. 409437.
[21]Cholak, P. A. and Harrington, L. A., On the definability of the double jump in the computably enumerable sets. Journal of Mathematical Logic, vol. 2 (2002), no. 2, pp. 261296.
[22]Coles, R. J., Downey, R. G., and Laforte, G. L., Notes on wtt-jump and ordinal notations. Manuscript, 1998.
[23]Cooper, S. B., Minimal pairs and high recursively enumerable degrees. Journal of Symbolic Logic, vol. 39 (1974), pp. 655660.
[24]Day, A. R., Indifferent sets for genericity. Journal of Symbolic Logic, vol. 78 (2013), no. 1, pp. 113138.
[25]Diamondstone, D., Greenberg, N., and Turetsky, D., Natural large degree spectra. Computability, vol. 2 (2013), no. 1, pp. 18.
[26]Downey, R. G., Lattice nonembeddings and initial segments of the recursively enumerable degrees. Annals of Pure and Applied Logic, vol. 49 (1990), no. 2, pp. 97119.
[27]Downey, R. G. and Greenberg, N., A transfinite hierarchy of lowness notions in the computably enumerable degrees, unifying classes, and natural definability, submitted.
[28]Downey, R. G. and Greenberg, N., Totally < ωω computably enumerable and m-topped degrees, Theory and Applications of Models of Computation (Cai, J.-Y., Cooper, S. B., and Li, A., editors), Lecture Notes in Computer Science, vol. 3959, Springer, Berlin, 2006, pp. 4660.
[29]Downey, R. G. and Greenberg, N., Turing degrees of reals of positive effective packing dimension. Information Processing Letters, vol. 108 (2008), no. 5, pp. 298303.
[30]Downey, R. G., Greenberg, N., and Weber, R., Totally ω-computably enumerable degrees and bounding critical triples. Journal of Mathematical Logic, vol. 7 (2007), no. 2, pp. 145171.
[31]Downey, R. G. and Hirschfeldt, D. R., Algorithmic Randomness and Complexity, Theory and Applications of Computability, Springer, New York, 2010.
[32]Downey, R. G., Hirschfeldt, D. R., Nies, A., and Stephan, F., Trivial reals, Proceedings of the 7th and 8th Asian Logic Conferences (Downey, R., Cing, D., Tung, S. P., Qui, Y. H., Yasugi, M., and Wu, G., editors), Singapore University Press, Singapore, 2003, pp. 103131.
[33]Downey, R. G. and Jockusch, C. G. Jr., T-degrees, jump classes, and strong reducibilities. Transactions of the American Mathematical Society, vol. 301 (1987), no. 1, pp. 103136.
[34]Downey, R. G., Jockusch, C. G. Jr., and Stob, M., Array nonrecursive sets and multiple permitting arguments, Recursion Theory Week (Oberwolfach, 1989) (Amboes-Spies, K., Müller, G. H., and Sacks, G. E., editors), Lecture Notes in Mathematics, vol. 1432, Springer, Berlin, 1990, pp. 141173.
[35]Downey, R. G., Jockusch, C. G. Jr., and Stob, M., Array nonrecursive degrees and genericity, Computability, Enumerability, Unsolvability (Cooper, S. B., Slaman, T. A., and Wainer, S. S., editors), London Mathematical Society Lecture Note Series, vol. 224, Cambridge University Press, Cambridge, 1996, pp. 93104.
[36]Downey, R. G. and Lempp, S., Contiguity and distributivity in the enumerable Turing degrees. Journal of Symbolic Logic, vol. 62 (1997), no. 4, pp. 12151240.
[37]Downey, R. G. and Ng, K. M., Splitting into degrees with low computational complexity, submitted.
[38]Downey, R. G. and Shore, R. A., Degree-theoretic definitions of the low2 recursively enumerable sets. Journal of Symbolic Logic, vol. 60 (1995), no. 3, pp. 727756.
[39]Downey, R. G. and Shore, R. A., Lattice embeddings below a nonlow2 recursively enumerable degree. Israel Journal of Mathematics, vol. 94 (1996), pp. 221246.
[40]Downey, R. G. and Stephenson, J., Avioding effective packing dimension 1 below array noncomputable c.e. degrees, submitted.
[41]Downey, R. G. and Stob, M., Structural interactions of the recursively enumerable T- and w-degrees. Annals of Pure and Applied Logic, vol. 31 (1986), no. 2–3, pp. 205236. Special issue: Second Southeast Asian logic conference (Bangkok, 1984).
[42]Ershov, Y. L., A certain hierarchy of sets. I. Algebra i Logika, vol. 7 (1968), no. 1, pp. 4774.
[43Ershov, Y. L., A certain hierarchy of sets. II. Algebra i Logika, vol. 7 (1968), no. 4, pp. 1547.
[44]Ershov, Y. L., A certain hierarchy of sets. III. Algebra i Logika, vol. 9 (1970), pp. 3451.
[45]Figueira, S., Miller, J. S., and Nies, A., Indifferent sets. Journal of Logic and Computation, vol. 19 (2009), no. 2, pp. 425443.
[46]Franklin, J. N. Y., Greenberg, N., Stephan, F., and Wu, G., Anti-complex sets and reducibilities with tiny use. Journal of Symbolic Logic, vol. 78 (2013), no. 4, pp. 13071327.
[47]Greenberg, N., The role of true finiteness in the admissible recursively enumerable degrees. Memoirs of the American Mathematical Society, vol. 181 (2006), no. 854, vi + 99 pp.
[48]Harrington, L. and Soare, R. I., Post’s program and incomplete recursively enumerable sets. Proceedings of the National Academy of Sciences of the United States of America, vol. 88 (1991), no. 22, pp. 1024210246.
[49]Ishmukhametov, S., Weak recursive degrees and a problem of Spector, Recursion Theory and Complexity (Kazan, 1997) (Arslanov, M. M. and Lempp, S., editors), De Gruyter Series in Logic and its Applications, vol. 2, de Gruyter, Berlin, 1999, pp. 8187.
[50]Jockusch, C. G. Jr. and Posner, D. B., Double jumps of minimal degrees. Journal of Symbolic Logic, vol. 43 (1978), no. 4, pp. 715724.
[51]Kjos-Hanssen, B., Merkle, W., and Stephan, F., Kolmogorov complexity and the recursion theorem. Transactions of the American Mathematical Society, vol. 363 (2011), no. 10, pp. 54655480.
[52]Kummer, M., Kolmogorov complexity and instance complexity of recursively enumerable sets. SIAM Journal on Computing, vol. 25 (1996), no. 6, pp. 11231143.
[53]Kurtz, S. A., Randomness and genericity in the degrees of unsolvability, Ph.D. dissertation, University of Illinois, Urbana, 1981.
[54]Lachlan, A. H., Embedding nondistributive lattices in the recursively enumerable degrees, Conference in Mathematical Logic—London ’70 (Hodges, W., editor), Lecture Notes in Mathematics, vol. 255, Springer, Berlin, 1972, pp. 149177.
[55]Lachlan, A. H., Bounding minimal pairs. Journal of Symbolic Logic, vol. 44 (1979), no. 4, pp. 626642.
[56]Lachlan, A. H. and Soare, R. I., Not every finite lattice is embeddable in the recursively enumerable degrees. Advances in Mathematics, vol. 37 (1980), no. 1, pp. 7482.
[57]Lempp, S. and Lerman, M., A finite lattice without critical triple that cannot be embedded into the enumerable Turing degrees. Annals of Pure and Applied Logic, vol. 87 (1997), no. 2, pp. 167185. Logic Colloquium ’95 Haifa.
[58]Lempp, S., Lerman, M., and Solomon, D. R., Embedding finite lattices into the computably enumerable degrees—a status survey, Logic Colloquium ’02 (Chatzidakis, Z., Koepke, P., and Pohlers, W., editors), Lecture Notes in Logic, vol. 27, The Association for Symbolic Logic, La Jolla, CA, 2006, pp. 206229.
[59]Lerman, M., The embedding problem for the recursively enumerable degrees, Recursion Theory (Ithaca, NY, 1982) (Nerode, A. and Shore, R. A., editors), Proceedings of Symposia in Pure Mathematics, vol. 42, American Mathematical Society, Providence, RI, 1985, pp. 1320.
[60]Martin, D. A., Classes of recursively enumerable sets and degrees of unsolvability. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 12 (1966), pp. 295310.
[61]McInerney, M., Topics in algorithmic randomness and computability theory, Ph.D. thesis, Victoria University of Wellington, 2016.
[62]Moschovakis, Y. N., Many-one degrees of the predicates H a(x).Pacific Journal of Mathematics, vol. 18 (1966), pp. 329342.
[63]Nies, A., Lowness properties and randomness. Advances in Mathematics, vol. 197 (2005), no. 1, pp. 274305.
[64]Nies, A., Computability and Randomness, Oxford Logic Guides, vol. 51, Oxford University Press, Oxford, 2009.
[65]Nies, A., Shore, R. A., and Slaman, T. A., Interpretability and definability in the recursively enumerable degrees. Proceedings of the London Mathematical Society (3), vol. 77 (1998), no. 2, pp. 241291.
[66]Post, E. L., Recursively enumerable sets of positive integers and their decision problems.Bulletin of the American Mathematical Society, vol. 50 (1944), pp. 284316.
[67]Shore, R. A., The recursively enumerable α-degrees are dense. Annals of Mathematical Logic, vol. 9 (1976), no. 1–2, pp. 123155.
[68]Shore, R. A., Natural definability in degree structures, Computability Theory and its Applications (Boulder, CO, 1999) (Cholak, P. A., Lempp, S., Lerman, M., and Shore, R. A., editors), Contemporary Mathematics, vol. 257, American Mathematical Society, Providence, RI, 2000, pp. 255271.
[69]Slaman, T. A., The density of infima in the recursively enumerable degrees. Annals of Pure and Applied Logic, vol. 52 (1991), no. 1–2, pp. 155179. International Symposium on Mathematical Logic and its Applications (Nagoya, 1988).
[70]Soare, R. I., Recursive theory and Dedekind cuts. Transactions of the American Mathematical Society, vol. 140 (1969), pp. 271294.
[71]Spector, C., Recursive well-orderings. Journal of Symbolic Logic, vol. 20 (1955), pp. 151163.
[72]Stephan, F. and Wu, G., Presentations of k-trivial reals and kolmogorov complexity, New Computational Paradigms (First Conference on Computability in Europe, CiE 2005, Amsterdam, The Netherlands, June 8-12, 2005. Proceedings) (Cooper, S. B., Löwe, B., and Torenvliet, L., editor), Lecture Notes in Computer Science, vol. 3526, Springer, 2005, pp. 461469.
[73]Walk, S. M., Towards a definition of the array computable degrees. Ph.D. thesis, University of Notre Dame, 1999.
[74]Wang, Y., Randomness and complexity. Ph.D. thesis, University of Heidelberg, 1996.
[75]Weinstein, B., Embedding of the lattice 1-3-1 into the recursively enumerable degrees, Ph.D. thesis, University of California, Berkeley, 1988.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Symbolic Logic
  • ISSN: 1079-8986
  • EISSN: 1943-5894
  • URL: /core/journals/bulletin-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 32 *
Loading metrics...

Abstract views

Total abstract views: 120 *
Loading metrics...

* Views captured on Cambridge Core between 26th April 2018 - 23rd June 2018. This data will be updated every 24 hours.