We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Ilijas Farah, Bradd Hart, and David Sherman. Model theory of operator algebras I: stability. Bulletin of the London Mathematical Society, vol. 45 (2013), no. 4, pp. 825–838, doi:10.1112/blms/bdt014. - Ilijas Farah, Bradd Hart, and David Sherman. Model theory of operator algebras II: model theory. Israel Journal of Mathematics, vol. 201 (2014), no. 1, pp. 477–505, doi:10.1007/s11856-014-1046-7. - Ilijas Farah, Bradd Hart, and David Sherman. Model theory of operator algebras III: elementary equivalence and II1factors. Bulletin of the London Mathematical Society, vol. 46 (2014), no. 3, pp. 609–628, doi:10.1112/blms/bdu012. - Isaac Goldbring, Bradd Hart, and Thomas Sinclair. The theory of tracial von Neumann algebras does not have a model companion. Journal of Symbolic Logic, vol. 78 (2013), no. 3, pp. 1000–1004.
Review products
Ilijas Farah, Bradd Hart, and David Sherman. Model theory of operator algebras I: stability. Bulletin of the London Mathematical Society, vol. 45 (2013), no. 4, pp. 825–838, doi:10.1112/blms/bdt014.
Ilijas Farah, Bradd Hart, and David Sherman. Model theory of operator algebras II: model theory. Israel Journal of Mathematics, vol. 201 (2014), no. 1, pp. 477–505, doi:10.1007/s11856-014-1046-7.
Ilijas Farah, Bradd Hart, and David Sherman. Model theory of operator algebras III: elementary equivalence and II1factors. Bulletin of the London Mathematical Society, vol. 46 (2014), no. 3, pp. 609–628, doi:10.1112/blms/bdu012.
Université Claude Bernard – Lyon 1, Institut Camille Jordan, CNRS UMR 5208, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France. URL: http://math.univ-lyon1.fr/∼begnac/
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)