Skip to main content


  • JAN VON PLATO (a1)

What seem to be Kurt Gödel’s first notes on logic, an exercise notebook of 84 pages, contains formal proofs in higher-order arithmetic and set theory. The choice of these topics is clearly suggested by their inclusion in Hilbert and Ackermann’s logic book of 1928, the Grundzüge der theoretischen Logik. Such proofs are notoriously hard to construct within axiomatic logic. Gödel takes without further ado into use a linear system of natural deduction for the full language of higher-order logic, with formal derivations closer to one hundred steps in length and up to four nested temporary assumptions with their scope indicated by vertical intermittent lines.

Hide All
Adzic, M. and Dosen, K. (2016) Gödel’s Notre Dame course. The Bulletin of Symbolic Logic, vol. 22, pp. 469481.
Carnap, R. (1929) Abriss der Logistik. Springer.
Carnap, R. (2000) Untersuchungen zur allgemeinen Axiomatik. Bonk, T. and Mosterin, J., eds, Wissenschaftliche Buchgesellschaft.
Dawson, J. (1997) Logical Dilemmas: The Life and Work of Kurt Gödel. A. K. Peters.
Dosen, K. and Adzic, M. (2018) Gödel’s natural deduction. Studia Logica, vol. 106, pp. 397415.
Gentzen, G. (1935) Der erste Widerspruchsfreiheitsbeweis für die klassische Zahlentheorie. First printed in Archiv für mathematische Logik, vol. 16 (1974), pp. 97118.
Gentzen, G. (2017) Saved from the Cellar: Gerhard Gentzen’s Shorthand Notes on Logic and Foundations of Mathematics. With an introduction and translation by von Plato, Jan. Studies in the History of Mathematics and Physical Sciences, Springer.
Gödel, K. (1929) Über die Vollständigkeit des Logikkalküls. Doctoral dissertation printed in Gödel (1986), pp. 60101.
Gödel, K. (1930) Vorlesung über Vollständigkeit des Funktionenkalküls. First printed in Gödel (1995), pp. 1629.
Gödel, K. (1986) Collected Works, vol. 1. Oxford U. P.
Gödel, K. (1995) Collected Works, vol. 3. Oxford U. P.
Gödel, K. (2017) Logic Lectures: Gödel’s Basic Logic Course at Notre Dame . Adzic, M. and Dosen, K., eds, Logic Society, Belgrade.
Goldfarb, W. (2005) On Gödel’s way in: the influence of Carnap. The Bulletin of Symbolic Logic. vol. 11, pp. 185193.
van Heijenoort, J., ed, (1967) From Frege to Gödel, A Source Book in Mathematical Logic, 1879–1931. Harvard University Press.
Hilbert, D. (2013) David Hilbert’s Lectures on the Foundations of Arithmetic and Logic, 1917–1933. Edited by Ewald, W. and Sieg, W.. Springer.
Hilbert, D. and Ackermann, W. (1928) Grundzüge der theoretischen Logik. Springer.
Jaśkowski, S. (1934) On the rules of supposition in formal logic. As reprinted in McCall, S., ed, Polish Logic 1920–1939, pp. 232258, Oxford U. P. 1967.
Kreisel, G. (1987) Gödel’s excursions into intuitionistic logic. In Weingartner, P. and Schmetterer, L., eds, Gödel Remembered, pp. 65186, Bibliopolis, Naples.
Peano, G. (1889) Arithmetices Principia, Nova Methodo Exposita. Partial English tr. in Van Heijenoort.
von Plato, J. (2007) In the shadows of the Löwenheim-Skolem theorem: early combinatorial analyses of mathematical proofs. The Bulletin of Symbolic Logic, vol. 13, pp. 189225.
von Plato, J. (2009) Gentzen’s original proof of the consistency of arithmetic revisited. In Primiero, G. and Rahman, S. (eds.) Acts of Knowledge - History, Philosophy and Logic, pp. 151171, College Publications.
von Plato, J. (2017) The Great Formal Machinery Works: Theories of Deduction and Computation at the Origins of the Digital Age. Princeton University Press.
von Plato, J. (2017a) From Gentzen to Jaskowski and back: algorithmic translation of derivations between the two main systems of natural deduction. Bulletin of the Section of Logic, vol. 46, pp. 19.
Russell, B. (1919) Introduction to Mathematical Philosophy. Allen and Unwin.
Skolem, T. (1920) Logisch-kombinatorische Untersuchungen über die Erfüllbareit oder Beweisbarkeit mathematischer Sätze, nebst einem Theoreme über dichte Mengen. As reprinted in Skolem 1970, pp. 103–136.
Skolem, T. (1970) Selected Works in Logic. ed. Fenstad, J. E., Universitetsforlaget, Oslo.
Vailati, G. (1904) A proposito d’un teorema di Teeteto e di una dimostrazione di Euclide. Rivista di filosofia e scienze affine, vol. 6. Consulted from reprint in Vailati’s Scritti, pp. 516527, Barth, Leipzig 1911.
Whitehead, A. and Russell, B. (1910–13) Principia Mathematica, vols. I–III. Cambridge. Second edition 1927.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Symbolic Logic
  • ISSN: 1079-8986
  • EISSN: 1943-5894
  • URL: /core/journals/bulletin-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed