Skip to main content
×
×
Home

On Arbitrary sets and ZFC

  • José Ferreirós (a1)
Abstract

Set theory deals with the most fundamental existence questions in mathematics-questions which affect other areas of mathematics, from the real numbers to structures of all kinds, but which are posed as dealing with the existence of sets. Especially noteworthy are principles establishing the existence of some infinite sets, the so-called “arbitrary sets.” This paper is devoted to an analysis of the motivating goal of studying arbitrary sets, usually referred to under the labels of quasi-combinatorialism or combinatorial maximality. After explaining what is meant by definability and by “arbitrariness,” a first historical part discusses the strong motives why set theory was conceived as a theory of arbitrary sets, emphasizing connections with analysis and particularly with the continuum of real numbers. Judged from this perspective, the axiom of choice stands out as a most central and natural set-theoretic principle (in the sense of quasi-combinatorialism). A second part starts by considering the potential mismatch between the formal systems of mathematics and their motivating conceptions, and proceeds to offer an elementary discussion of how far the Zermelo–Fraenkel system goes in laying out principles that capture the idea of “arbitrary sets”. We argue that the theory is rather poor in this respect.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Symbolic Logic
  • ISSN: 1079-8986
  • EISSN: 1943-5894
  • URL: /core/journals/bulletin-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 160 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th August 2018. This data will be updated every 24 hours.