Skip to main content Accessibility help




The investigations on higher-order type theories and on the related notion of parametric polymorphism constitute the technical counterpart of the old foundational problem of the circularity (or impredicativity) of second and higher-order logic. However, the epistemological significance of such investigations has not received much attention in the contemporary foundational debate.

We discuss Girard’s normalization proof for second order type theory or System F and compare it with two faulty consistency arguments: the one given by Frege for the logical system of the Grundgesetze (shown inconsistent by Russell’s paradox) and the one given by Martin-Löf for the intuitionistic type theory with a type of all types (shown inconsistent by Girard’s paradox).

The comparison suggests that the question of the circularity of second order logic cannot be reduced to Russell’s and Poincaré’s 1906 “vicious circle” diagnosis. Rather, it reveals a bunch of mathematical and logical ideas hidden behind the hazardous idea of impredicative quantification, constituting a vast (and largely unexplored) domain for foundational research.



Hide All
[1]Asperti, A. and Longo, G., Categories, Types and Structures: An Introduction to Category Theory for the Working Computer Scientist, The M.I.T. Press, Cambridge, MA, 1991.
[2]Bainbridge, E. S., Freyd, P. J., Scedrov, A., and Scott, P. J., Functorial polymorphism. Theoretical Computer Science, vol. 70 (1990), pp. 3564.
[3]Carnap, R., The logicist foundations of mathematics (1931), Philosophy of Matemathics: Selected Readings (Benacerraf, P. and Putnam, H., editors), Cambridge University Press, Cambridge, 1983, pp. 4152.
[4]Church, A., A formulation of the simple theory of types. The Journal of Symbolic Logic, vol. 5 (1940), no. 2, pp. 5668.
[5]Coquand, T., An analysis of Girard’s paradox, First IEEE Symposium on Logic in Computer Science, Boston, IEEE Computer Society Press, Washington, DC, 1986, pp. 227236.
[6]Coquand, T., Gunter, C., and Winskel, G., Domain theoretic models of polymorphism. Information and Computation, vol. 81 (1989), no. 2, pp. 123167.
[7]Curry, H. B. and Feys, R., Combinatory Logic, vol. I, North-Holland, Amsterdam, 1958.
[8]De Bruijn, N. G., The mathematical language AUTOMATH, its usage and some of its extensions, Symposium on Automatic Demonstration (Versailles 1968) (Laudet, M., Lacombe, D., and Schuetzenberger, M., editors), Lecture Notes in Mathematics, vol. 125, Springer-Verlag, Berlin, 1970, pp. 2961.
[9]Dosen, K., Cut Elimination in Categories, Kluwer, Dordrecht, 1999.
[10]Dummett, M., Frege: Philosophy of Mathematics, Duckworth, Cambridge, MA, 1991.
[11]Dummett, M., The Logical Basis of Metaphysics, Duckworth, London, 1991.
[12]Dummett, M., The vicious circle principle, Cambridge and Vienna: Frank P. Ramsey and the Vienna Circle (Galavotti, M. C., editor), Vienna Circle Institute Yearbook, vol. 12, Springer, Dordrecht, 2006, pp. 2933.
[13]Frege, G., The Basic Laws of Arithmetic (1893), trans. Furth, M., University of California, Berkeley, 1967.
[14]Gallier, J., On Girard’s “Candidats de Réductibilité”, Logic and Computer Science (Odifreddi, P., editor), Academic Press, London, 1990, pp. 123203.
[15]Gentzen, G., Investigations into logical deduction (1934). American Philosophical Quarterly, vol. 1(1964), no. 4, pp. 288306.
[16]Girard, J.-Y., Interprétation fonctionnelle et élimination des coupures de l’arithmetique d’ordre supérieur, Ph.D. thesis, Université Paris VII, 1972.
[17]Girard, J.-Y., The system F of variable types, fifteen years later. Theoretical Computer Science, vol. 45 (1986), no. 2, pp. 159192.
[18]Girard, J.-Y., Proof Theory and Logical Complexity, vol. 1, Studies in Proof Theory, Elsevier Science, Napoli, 1990.
[19]Girard, J.-Y., Light linear logic. Information and Computation, vol. 143 (1998), pp. 175204.
[20]Girard, J.-Y., Lafont, Y., and Taylor, P., Proofs and Types, Cambridge Tracts in Theoretical Computer Science, vol. 7, Cambridge University Press, New York, 1989.
[21]Girard, J.-Y., Scedrov, A., and Scott, P. J., Normal forms and cut-free proofs as natural transformations, Logic from Computer Science (Moschovakis, Y., editor), Mathematical Sciences Research Institute Publications, vol. 21, Springer-Verlag, New York, 1992, pp. 217241.
[22]Gödel, K., Russell’s mathematical logic, The Philosophy of Bertrand Russell (Schilpp, P. A., editor), Northwestern University, Evanston, IL, 1944, pp. 123153.
[23]Goldfarb, W. D., Jacques Herbrand, Logical Writings, Harvard University Press, Cambridge, MA, 1987.
[24]Harper, R. and Mitchell, J. C., Parametricity and variants of Girard’s J operator. Information Processing Letters, vol. 70 (1999), no. 1, pp. 15.
[25]Heck, R. G., Grundgesetze der Arithmetik I §§29–32 29–32. Notre Dame Journal of Formal Logic, vol. 38 (1998), pp. 437474.
[26]Hermida, C., Reddy, U. S., and Robinson, E. P., Logical relations and parametricity. A Reynolds programme for category theory and programming languages. Electronic Notes in Theoretical Computer Science, vol. 303 (2014), pp. 149180.
[27]Howard, W. A., The formula-as-types notion of construction (1969), To H.B. Curry. Essays on Combinatory Logic, Lambda Calculus and Formalism (Seldin, J. P. and Hindley, J. R., editors), Academic Press, New York, 1980.
[28]Hurkens, A. J. C., A simplification of Girard’s paradox, Second International Conference on Typed Lambda Calculi and Applications (Dezani-Ciancaglini, M. and Plotkin, G., editors), Springer-Verlag, Berlin, Heidelberg, New York, 1995, pp. 266278.
[29]Kamareddine, F., Laan, T., and Nederpelt, R., A Modern Perspective on Type Theory, from its Origins until Today, Kluwer Academics, Dordrecht, 2004.
[30]Krivine, J.-L., Realizability in classical logic, Interactive Models of Computation and Program Behaviour. Panoramas et synthèses, vol. 27, Société Mathématique de France, Paris, 2009, pp. 187229.
[31]Lambek, J. and Scott, P. J., Introduction to Higher Order Categorical Logic, Cambridge University Press, Melbourne, 1986.
[32]Longo, G. and Fruchart, T., Carnap’s remarks on impredicative definitions and the genericity theorem, Logic and Foundations of Mathematics (Cantini, A., Casari, E., and Minari, P., editors), Synthese Library (Studies in Epistemology, Logic, Methodology, and Philosophy of Science), vol. 280, Springer, Dordrecht, 1999, pp. 4155.
[33]Longo, G., Milsted, K., and Soloviev, S., The genericity theorem and the notion of parametricity in the polymorphic λ-calculus. Theoretical Computer Science, vol. 121 (1993), pp. 323349.
[34]Martin-Löf, P., A theory of types, unpublished manuscript, 1970.
[35]Parigot, M., Classical proofs as programs, Kurt Gödel Colloquium (Gottlob, G., Leitsch, A., and Mundici, D., editors), Lecture Notes in Computer Science, vol. 713, Springer-Verlag, Berlin, Heidelberg, New York, 1993, pp. 263276.
[36]Poincaré, H., Les mathématiques et la logique. Revue de Métaphysique et de Morale, vol. 14 (1906), no. 3, pp. 294317.
[37]Prawitz, D., Hauptsatz for higher order logic. The Journal of Symbolic Logic, vol. 33 (1968), no. 3, pp. 452457.
[38]Prawitz, D., Ideas and results in proof theory, Proceedings of the 2nd Scandinavian Logic Symposium (Oslo) (Fenstad, J. E., editor), Studies in Logic and Foundations of Mathematics, vol. 63, North-Holland, Amsterdam, 1971, pp. 235307.
[39]Reynolds, J. C., Towards a theory of type structure, Programming Symposium (Robinet, B., editor), Lecture Notes in Computer Science, vol. 19, Springer-Verlag, Berlin, Heidelberg, New York, 1974, pp. 408423.
[40]Reynolds, J. C., Types, abstraction and parametric polymorphism, Information Processing ’83 (Mason, R. E. A., editor), North-Holland, Amsterdam, 1983, pp. 513523.
[41]Russell, B., On some difficulties in the theory of transfinite numbers and order types. Proceedings of the London Mathematical Society, vol. 4 (1906), pp. 2953.
[42]Russell, B., Mathematical logic as based on the theory of types. Americal Journal of Mathematics, vol. 30 (1908), no. 3, pp. 222262.
[43]Russell, B., The Principles of Mathematics, second ed. [first published 1903], W.W. Norton & Company, New York, 1938.
[44]Russell, B. and Whitehead, A. N., Principia Mathematica, Cambridge University Press, London, 1910.
[45]Strachey, C., Fundamental concepts in programming languages. Higher Order and Symbolic Computation, vol. 13 (1967), pp. 1149.
[46]Sundholm, G., Intuitionism and logical tolerance, Alfred Tarski and the Vienna Circle (Wolenski, J. and Köhler, E., editors), Vienna Circle Institute Yearbook, vol. 6, Springer, Dordrecht, 1999, pp. 135148.
[47]Tait, W. W., Intensional interpretation of functionals of finite type I. The Journal of Symbolic Logic, vol. 32 (1967), no. 2, pp. 198212.
[48]Tait, W. W., A nonconstructive proof of Gentzen’s Hauptsatz for second order predicate logic. The Journal of Symbolic Logic, vol. 33 (1968), no. 2, pp. 289290.
[49]Takahashi, M., A proof of the cut-elimination theorem in simple type-theory. Journal of the Mathematical Society of Japan, vol. 19 (1967), no. 4, pp. 399410.
[50]Tranchini, L., Pistone, P., and Petrolo, M., The naturality of natural deduction. Studia Logica (2017), online first,





Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.