Skip to main content
×
Home

RELATIVIZING OPERATIONAL SET THEORY

  • GERHARD JÄGER (a1)
Abstract
Abstract

We introduce a way of relativizing operational set theory that also takes care of application. After presenting the basic approach and proving some essential properties of this new form of relativization we turn to the notion of relativized regularity and to the system OST (LR) that extends OST by a limit axiom claiming that any set is element of a relativized regular set. Finally we show that OST (LR) is proof-theoretically equivalent to the well-known theory KPi for a recursively inaccessible universe.

Copyright
References
Hide All
[1] Barwise K. J.,Admissible Sets and Structures, Perspectives in Mathematical Logic, vol. 7, Springer, Berlin, Heidelberg, New York, 1975.
[2] Beeson M. J., Foundations of Constructive Mathematics: Metamathematical Studies, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3/6, Springer, Berlin, Heidelberg, New York, Tokyo, 1985.
[3] Cantini A., Extending constructive operational set theory by impredicative principles . Mathematical Logic Quarterly, vol. 57 (2011), no. 3, pp. 299322.
[4] Cantini A. and Crosilla L., Constructive set theory with operations , Logic Colloquium 2004 (Andretta A., Kearnes K., and Zambella D., editors), Lecture Notes in Logic, vol. 29, Cambridge University Press, Cambridge, 2007, pp. 4783.
[5] Cantini A. and Crosilla L., Elementary constructive operational set theory , Ways of Proof Theory (Schindler R., editor), Ontos Mathematical Logic, vol. 2, De Gruyter, Frankfurt, 2010, pp. 199240.
[6] Feferman S., A language and axioms for explicit mathematics , Algebra and Logic (Crossley J. N., editor), Lecture Notes in Mathematics, vol. 450, Springer, Berlin, Heidelberg, New York, 1975, pp. 87139.
[7] Feferman S., Notes on operational set theory, I. Generalization of “small” large cardinals in classical and admissible set theory, Technical Notes , 2001.
[8] Feferman S., Operational set theory and small large cardinals . Information and Computation, vol. 207 (2009), pp. 971979.
[9] Jäger G., Die konstruktible Hierarchie als Hilfsmittel zur beweistheoretischen Untersuchung von Teilsystemen der Mengenlehre und Analysis, Ph.D. thesis, Mathematisches Institut, Universität München, 1979.
[10] Jäger G., A well-ordering proof for Feferman’s theory T0 . Archiv für Mathematische Logik und Grundlagenforschung, vol. 23 (1983), no. 1, pp. 6577.
[11] Jäger G., Theories for Admissible Sets: A Unifying Approach to Proof Theory , Studies in Proof Theory, Lecture Notes, vol. 2, Bibliopolis, Napoli, 1986.
[12] Jäger G., On Feferman’s operational set theory OST. Annals of Pure and Applied Logic, vol. 150 (2007), no. 1–3, pp. 1939.
[13] Jäger G., Full operational set theory with unbounded existential quantification and power set . Annals of Pure and Applied Logic, vol. 160 (2009), no. 1, pp. 3352.
[14] Jäger G., Operations, sets and classes , Logic, Methodology and Philosophy of Science—Proceedings of the Thirteenth International Congress (Glymour C., Wei W., and Westerståhl D., editors), College Publications, London, 2009, pp. 7496.
[15] Jäger G., Operational closure and stability . Annals of Pure and Applied Logic, vol. 164 (2013), no. 7–8, 813821.
[16] Jäger G. and Pohlers W., Eine beweistheoretische Untersuchung von $\left( {{\rm{\Delta }}_2^1 - CA} \right) + \left( {BI} \right)$ und verwandter Systeme . Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse (1982), pp. 128.
[17] Jäger G. and Zumbrunnen R., About the strength of operational regularity , Logic, Construction, Computation (Berger U., Diener H., Schuster P., and Seisenberger M., editors), Ontos Mathematical Logic, vol. 3, De Gruyter, Frankfurt, 2012, pp. 305324.
[18] Jäger G. and Zumbrunnen R., Explicit mathematics and operational set theory: some ontological comparisons, this Bulletin, vol. 20 (2014), no. 3, pp. 275292.
[19] Kunen K., Set Theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, vol. 102, Elsevier, Amsterdam, New York, 1980.
[20] Probst D., Pseudo-hierarchies in admissible set theory without foundation and explicit mathematics, Ph.D. thesis, Institut für Informatik und angewandte Mathematik, Universität Bern, 2005.
[21] Troelstra A. S. and van Dalen D., Constructivism in Mathematics, I, Studies in Logic and the Foundations of Mathematics, vol. 121, Elsevier, Amsterdam, New York, 1988.
[22] Zumbrunnen R., Contributions to operational set theory, Ph.D. thesis, Institut für Informatik und angewandte Mathematik, Universität Bern, 2013.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Symbolic Logic
  • ISSN: 1079-8986
  • EISSN: 1943-5894
  • URL: /core/journals/bulletin-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 31 *
Loading metrics...

Abstract views

Total abstract views: 104 *
Loading metrics...

* Views captured on Cambridge Core between 10th October 2016 - 19th November 2017. This data will be updated every 24 hours.