Skip to main content Accessibility help
×
×
Home

The Road to Modern Logic—An Interpretation

  • José Ferreirós (a1)

Abstract

This paper aims to outline an analysis and interpretation of the process that led to First-Order Logic and its consolidation as a core system of modern logic. We begin with an historical overview of landmarks along the road to modern logic, and proceed to a philosophical discussion casting doubt on the possibility of a purely rational justification of the actual delimitation of First-Order Logic. On this basis, we advance the thesis that a certain historical tradition was essential to the emergence of modern logic; this traditional context is analyzed as consisting in some guiding principles and, particularly, a set of exemplars (i.e., paradigmatic instances). Then, we proceed to interpret the historical course of development reviewed in section 1, which can broadly be described as a two-phased movement of expansion and then restriction of the scope of logical theory. We shall try to pinpoint ambivalencies in the process, and the main motives for subsequent changes. Among the latter, one may emphasize the spirit of modern axiomatics, the situation of foundational insecurity in the 1920s, the resulting desire to find systems well-behaved from a proof-theoretical point of view, and the metatheoretical results of the 1930s. Not surprisingly, the mathematical and, more specifically, the foundational context in which First-Order Logic matured will be seen to have played a primary role in its shaping.

Mathematical logic is what logic, through twenty-five centuries and a few transformations, has become today. (Jean van Heijenoort)

Copyright

References

Hide All
[1] Arnauld, Antoine and Nicole, Pierre, La logique ou l'art de penser, Flammarion, Paris, 1970 (original edition 1662).
[2] Bernays, Paul, A system of axiomatic set theory, The Journal of Symbolic Logic, vol. 2 (1937), pp. 6577.
[3] Birkhoff, Garrett, A source book in classical analysis, Harvard University Press, 1973.
[4] Bocheński, Joseph M., Formale Logik, Alber, München, 1956.
[5] Boole, George, The mathematical analysis of logic, Macmillan, Cambridge, 1847, references to the reprint Basil Blackwell, Oxford, 1951.
[6] Carnap, Rudolf, Abriss der Logistik, mit besonderer Berücksichtigung der Relationstheorie und ihrer Anwendungen, Springer, Wien, 1929.
[7] Carnap, Rudolf, Die logizistische Grundlegung der Mathematik, Erkenntnis, vol. 2 (1931), pp. 91105, references to the English translation in P. Benacerraf and H. Putnam, Philosophy of Mathematics : selected readings, Cambridge University Press, 1983, 41–52.
[8] Church, Alonzo, Review of Chwistek, L., Überwindung des Begriffsrelativismus, The Journal of Symbolic Logic, vol. 2 (1937), pp. 169170.
[9] Church, Alonzo, The present situation in the foundations of mathematics, Philosophie mathématique (Gonseth, F., editor), Hermann, Paris, 1939.
[10] Church, Alonzo, A formulation of the simple theory of types, The Journal of Symbolic Logic, vol. 5 (1940), pp. 5668.
[11] Church, Alonzo, Introduction to mathematical logic, Princeton University Press, 1956.
[12] Corry, Leo, Modern algebra and the rise of mathematical structures, Birkhäuser, Basel, 1996.
[13] Creath, Richard (editor), Dear Carnap, Dear Van: The Quine-Carnap correspondence and related work, University of California Press, 1990.
[14] Dawson, John W. Jr., Completing the GOdel-Zermelo correspondence, Historia Mathematica, vol. 12 (1985), pp. 6670.
[15] de Morgan, Augustus, On the syllogism: III and on logic in general, Transactions of the Cambridge Philosophical Society, 1858, references to (Heart, P., editor), On the Syllogism and other logical writings , pp. 74146, Routledge & Kegan Paul, London, 1966.
[16] de Morgan, Augustus, On the syllogism: IV and on the logic of relations, Transactions of the Cambridge Philosophical Society (1860), references to (Heart, P., editor), On the Syllogism and other logical writings , pp. 208246, Routledge & Kegan Paul, London, 1966.
[17] Dedekind, Richard, Stetigkeit und irrationale Zahlen, Gesammelte mathematische Werke, vol. 3, Chelsea, New York, 1969, reprintof original edition (1872). English translation in W. B. Ewald (editor), From Kant to Hilbert , Oxford University Press, vol. 2.
[18] Dedekind, Richard, Was sind und was sollen die Zahlen?, Gesammelte mathematische Werke, vol. 3, Chelsea, New York, 1969, reprint of original edition (1888). English translation in W. B. Ewald (editor), From Kant to Hilbert , Oxford Univ. Press, vol. 2.
[19] Dreben, Burton and van Heuenoort, J., Introductory note, Collected works of Gödel, K., vol. 1, Oxford University Press, 1986, pp. 4459.
[20] Drobisch, Moritz W., Neue Darstellung der Logik nach ihren einfachen Verhältnissen, Voss, Leipzig, 1836 (four editions up to 1875).
[21] Ferreirós, José, Traditional logic and the early history of sets, 1854-1908, Archive for History of Exact Sciences, vol. 50 (1996), pp. 571.
[22] Ferreiros, Jose, Notes on types, sets and logicism, 1930–1950, Theoria, vol. 12 (1997), pp. 91124.
[23] Ferreiros, Jose, Labyrinth of thought. A history ofset theory and its role in modern mathematics, Birkhäuser, Basel, 1999.
[24] Frege, Gottlob, Begriffsschrift, Nebert, Halle, 1879, reprint as Begriffsschrift und andere Aufsatze (I. Angelelli, editor) in Olms, Hildesheim, 1964.
[25] Frege, Gottlob, Grundgesetze der Arithmetik, vol. 1, Pohl, Jena, 1893, reprint Olms, Hildesheim, 1966.
[26] Frege, Gottlob, Grundgesetze der Arithmetik, vol. 2, Pohl, Jena, 1903, reprint Olms, Hildesheim, 1966.
[27] Frege, Gottlob, Anwendungen der Begriffsschrift, Jenaischer Zeitschrift für Naturwiss, 1879. References to the reprint in Begriffsschrift und andere Aufsätze (I. Angelelli, editor), Olms, Hildesheim, 1964.
[28] Frege, Gottlob, Der Gedanke. Eine logische Untersuchung, Beiträge zur Philosophie des deutschen Idealismus, vol. 1 (1918), references to the English translation in B. McGuinness, editor. Collected Papers on Mathematics, Logic, and Philosophy , pp. 351–372, Basil Blackwell, Oxford, 1984.
[29] Gödel, Kurt, Über formal unentscheidbare Satze der Principia Mathematica und verwandter Systeme, Monatshefte für Mathematik und Physik, vol. 38 (1931), pp. 173198, references to the reprint in Collected works , vol. 1, Oxford University Press, 1986.
[30] Godel, Kurt, Consistency proof for the generalized continuum hypothesis, Proceedings of the National Academy of Sciences of the United States of America, vol. 24 (1939), pp. 220224, references to the reprint in Collected works , vol. 2, Oxford University Press, 1990.
[31] Godel, Kurt, The consistency of the axiom of choice and of the generalized continuum hypothesis with the axioms of set theory, Princeton University Press, 1940, references to the reprint in Collected works , vol. 2, Oxford University Press, 1990.
[32] Goldfarb, Warren, Logic in the twenties: The nature of the quantifier, The Journal of Symbolic Logic, vol. 44 (1979), pp. 351368.
[33] Grattan-Guinness, Ivor, In memoriam Kurt Godel: His 1931 correspondence with Zermelo, Historia Mathematica, vol. 6 (1979), pp. 294304.
[34] Grattan-Guinness, Ivor, Living together and living apart. On the interactions between mathematics and logics from the French Revolution to the First World War, South African Journal of Philosophy, vol. 7 (1988), pp. 7382.
[35] Hllbert, David, Axiomatisches Denken, Mathematische Annalen, vol. 78 (1918), pp. 405415, references to the reprint in Gesammelte Abhandlungen , vol. 3, Springer, Berlin, 1935, 146156.
[36] Hllbert, David, Die logischen Grundlagen der Mathematik, Mathematische Annalen, vol. 88 (1923), pp. 151165, references to the reprint in Gesammelte Abhandlungen , vol. 3, Springer, Berlin, 1935, 178–191.
[37] Hllbert, David and Ackermann, Wilhelm, Grundzüge der theoretischen Logik, Springer, Berlin, 1928.
[38] Klein, Felix, Vorlesungen über die Entwicklung der Mathematik, Springer, Berlin, 1926, 2 vols. (reprinted in 1979).
[39] Kneale, William and Kneale, Martha, The development of logic, Clarendon, Oxford, 1962.
[40] Kuhn, Thomas, The structure of scientific revolutions, 2nd ed., Chicago University Press, 1970.
[41] Lewis, Clarence I., A survey of symbolic logic, University of California Press, Berkeley, 1918, reprint Dover, New York.
[42] Łukasiewicz, Jan, Aristotle's syllogistics, Clarendon, Oxford, 1957.
[43] Moore, Gregory H., Beyond first-order logic. The historical interplay between mathematical logic and axiomatic set theory, History and Philosophy of Logic, vol. 1 (1980), pp. 95137.
[44] Moore, Gregory H., Zermelo's axiom of choice, Springer, Berlin, 1982.
[45] Moore, Gregory H., The emergence offirst-order logic, History and philosophy of modern mathematics (Aspray, W. and Kitcher, P., editors), University of Minnesota Press, 1988.
[46] Moore, Gregory H., Hilbert and the emergence of modern mathematical logic, Theoria, vol. 12 (1997), pp. 6590.
[47] Moore, Gregory H., Logic, early twentieth century, Routledge encyclopedia of philosophy (Craig, E., editor), Routledge, London, 1998.
[48] Nagel, Ernest, The formation of modern conceptions of formal logic in the development of geometry (original edition 1939), Teleology revisited, Columbia University Press, 1979.
[49] Pasch, Moritz, Vorlesungen über neuere Geometrie, Springer, Berlin, 1926 (first edition 1882).
[50] Peano, Giuseppe, Arithmeticesprincipia, nova methodo exposita, Bocca, Torino, 1889, partial English translation in [72].
[51] Peckhaus, Volker, The way of logic into mathematics, Theoria, vol. 12 (l997), pp. 3964.
[52] Peckhaus, Volker, Mathesis universalis. Leibniz und die Entdeckung der formalen Logik im 19. Jahrhundert, Akademie-Verlag, Berlin, 1998.
[53] Peckhaus, Volker, 19th century logic between philosophy and mathematics, this Bulletin, vol. 5 (1999), pp. 433450.
[54] Quine, Willard van O., Set-theoretic foundations for logic, The Journal of Symbolic Logic, vol. 1 (1936), pp. 4557.
[55] Peckhaus, Volker, Mathematical logic, Norton, New York, 1940.
[56] Peckhaus, Volker, From a logical point of view, Harvard University Press, 1953.
[57] Peckhaus, Volker, Philosophy of logic, Prentice-Hall, Englewood Cliffs, NJ, 1970.
[58] Peckhaus, Volker, Autobiographical notes, The philosophy of W. V. Quine (Hahn, L. E. and Schilpp, P. A., editors), Open Court, La Salle, IL, 1986, pp. 146.
[59] Ramsey, Frank, The foundations of mathematics, Proceedings of the London Mathematical Society, vol. 25, 1926, reprinted in Foundations , London, Routledge & Kegan Paul, 1978.
[60] Russell, Bertrand, The principles of mathematics, Cambridge University Press, 1903, (2nd edition 1937). Reprint London, Allen & Unwin, 1948.
[61] Russell, Bertrand, Mathematical logic as based on the theory of types, American Journal of Mathematics, vol. 30 (1908), pp. 222262, references to the reprint in [72].
[62] Scanlan, Michael, Who were the American postulate theorists?, The Journal of Symbolic Logic, vol. 56 (1991), pp. 9811002.
[63] Shapiro, Stewart, Foundations without foundationalism. A case for second-order logic, Oxford University Press, 1990.
[64] Skolem, Thoralf, Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre, Dem femte skandinaviska mathematikerkongressen (Helsinki), Akademiska Bokhan-deln, 1923, also in Selected Works in Logic , Universitetsforlaget, Oslo, 1970. References to the English translation in [72], 290–301.
[65] Skolem, Thoralf, Über die mathematische Logik, Norsk matematisk tidsskrift, vol. 10 (1928), pp. 125142, references to the English translation in [72], 512–524. Also in Selected Works in Logic .
[66] Skolem, Thoralf, Über einige Grundlagenfragen der Mathematik, Videnskaps-selskapets Skrifter, (1929), no. 4, pp. 149, references to the reprint in Selected Works in Logic , Universitetsforlaget, Oslo, 1970.
[67] Tarski, Alfred, Der Wahrheitsbegrifff in den formalisierten Sprachen, Studia philosophica, vol. 1 (1935), (Polish original, without postscript, in 1933). References to the English translation in Logic, Semantics, Metamathematics , Oxford University Press, 1956.
[68] Tarski, Alfred, Introduction to logic and the methodology of deductive sciences, Harvard University Press, 1941.
[69] Tarski, Alfred, Über den Begriff der logischen Folgerung, Actes du congrès international de philosophie scientifique, (1936), references to the English translation in Logic, semantics, metamathematics , Oxford University Press, 1956.
[70] Ueberweg, Friedrich, System der Logik und Geschichte der logischen Lehren, 5th ed., Marcus, A., Bonn, 1882, English translation of the 3rd edition, London, Longmans, Green & Co., 1871.
[71] van der Waerden, Bartel L., Moderne Algebra, Springer, Berlin, 1930.
[72] van Heiuenoort, Jean, From Frege to Godel, Harvard University Press, 1967.
[73] von Neumann, John, Eine Axiomatisierung der Mengenlehre, Journal für die reine und angewandte Mathematik, vol. 154 (1925), pp. 219240, reprint in Collected Works , vol. 1, Oxford, Pergamon, 1961. English trans. in [72], 394–413.
[74] von Neumann, John, Zur Hilbert sehen Beweistheorie, Mathematische Zeitschrift, vol. 26 (1927), pp. 146, references to Collected Works , vol. 1, Oxford, Pergamon, 1961, 256–300.
[75] von Neumann, John, Die formalistische Grundlegung der Mathematik, Erkenntnis, vol. 2 (1931), references to the English translation in P. Benacerraf and H. Putnam, Philosophy of Mathe-matics: selected readings , Cambridge University Press, 1983.
[76] Weyl, Hermann, Über die Definitionen der mathematischen Grundbegriffe, Mathematisch-naturwissenschaftliche Blatter 7, (1910), references to the reprint in Gesammelte Abhandlungen , Springer, Berlin, 1968, vol. 1, 298–304.
[77] Weyl, Hermann, Das Kontinuum: Kritische Untersuchungen über die Grundlagen der Analysis, Veit, Leipzig, 1918, references to the reprint Chelsea, New York.
[78] Whately, Richard, Elements of logic, J. Mawman, London, 1827.
[79] Whitehead, Alfred N. and Russell, Bertrand, Principia mathematica, Cambridge University Press, 1910–1913 (2nd edition 19251927). References to the 1978 reprint.
[80] Zermelo, Ernst, Untersuchungen über die Grundlagen der Mengenlehre, Mathematische Annalen, vol. 65 (1908), pp. 261281, English translation in [72], 199215.
[81] Zermelo, Ernst, Über Stufen der Quantification und die Logik des Unendlichen, Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 41 (1932), pp. 8588.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Symbolic Logic
  • ISSN: 1079-8986
  • EISSN: 1943-5894
  • URL: /core/journals/bulletin-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed