Skip to main content
×
Home

THE STRENGTH OF ABSTRACTION WITH PREDICATIVE COMPREHENSION

  • SEAN WALSH (a1)
Abstract
Abstract

Frege’s theorem says that second-order Peano arithmetic is interpretable in Hume’s Principle and full impredicative comprehension. Hume’s Principle is one example of an abstraction principle, while another paradigmatic example is Basic Law V from Frege’s Grundgesetze. In this paper we study the strength of abstraction principles in the presence of predicative restrictions on the comprehension schema, and in particular we study a predicative Fregean theory which contains all the abstraction principles whose underlying equivalence relations can be proven to be equivalence relations in a weak background second-order logic. We show that this predicative Fregean theory interprets second-order Peano arithmetic (cf. Theorem 3.2).

Copyright
References
Hide All
[1]Beth Evert W., Chapter 13: Logicism, The Foundations of Mathematics: A Study in the Philosophy of Science, Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1959, pp. 353364.
[2]Boolos George, Logic, Logic, and Logic, Harvard University Press, Cambridge, MA, 1998, Edited by Jeffrey Richard.
[3]Burgess John P., Fixing Frege, Princeton Monographs in Philosophy, Princeton University Press, Princeton, 2005.
[4]Cook Roy T. (editor), The Arché Papers on the Mathematics of Abstraction, The Western Ontario Series in Philosophy of Science, vol. 71, Springer, Berlin, 2007.
[5]Cook Roy T. (editor), Conservativeness, stability, and abstraction. British Journal for the Philosophy of Science, vol. 63 (2012), pp. 673696.
[6]Demopoulos William (editor), Frege’s Philosophy of Mathematics, Harvard University Press, Cambridge, 1995.
[7]Feferman Solomon, Systems of predicative analysis. The Journal of Symbolic Logic, vol. 29 (1964), pp. 130.
[8]Feferman Solomon, Predicativity, The Oxford Handbook of Philosophy of Mathematics and Logic (Shapiro Stewart, editor), Oxford University Press, Oxford, 2005, pp. 590624.
[9]Ferreira Fernando and Wehmeier Kai F., On the consistency of the $\Delta _1^1 $-CA fragment of Frege’s Grundgesetze. Journal of Philosophical Logic, vol. 31 (2002), no. 4, pp. 301311.
[10]Frege Gottlob, Die Grundlagen der Arithmetik, Koebner, Breslau, 1884.
[11]Frege Gottlob, Grundgesetze der Arithmetik: begriffsschriftlich abgeleitet, Pohle, Jena, 1893, 1903, Two volumes. Reprinted in [12].
[12]Frege Gottlob, Grundgesetze der Arithmetik: begriffsschriftlich abgeleitet, Olms, Hildesheim, 1962.
[13]Frege Gottlob, The Foundations of Arithmetic: A Logico-Mathematical Enquiry into the Concept of Number, second ed., Northwestern University Press, Evanston, 1980. Translated by Austin John Langshaw.
[14]Frege Gottlob, Basic Laws of Arithmetic, Oxford University Press, Oxford, 2013. Translated by Ebert Philip A. and Rossberg Marcus.
[15]Friedman Harvey M., Some systems of second-order arithmetic and their use, Proceedings of the International Congress of Mathematicians, Vancouver 1974, vol. 1, 1975, pp. 235242.
[16]Ganea Mihai, Burgess’ PV is Robinson’s Q. The Journal of Symbolic Logic, vol. 72 (2007), no. 2, pp. 618624.
[17]Hájek Petr and Pudlák Pavel, Metamathematics of First-Order Arithmetic, Perspectives in Mathematical Logic, Springer, Berlin, 1998.
[18]Hale Bob and Wright Crispin, The Reason’s Proper Study, Oxford University Press, Oxford, 2001.
[19]Heck Richard G. Jr., The consistency of predicative fragments of Frege’s Grundgesetze der Arithmetik. History and Philosophy of Logic, vol. 17 (1996), no. 4, pp. 209220.
[20]Heck Richard G. Jr., Frege’s Theorem, Oxford University Press, Oxford, 2011.
[21]Hodes Harold, Logicism and the Ontological Commitments of Arithmetic. The Journal of Philosophy, vol. 81 (1984), no. 3, pp. 123149.
[22]Lindström Per, Aspects of Incompleteness, second ed., Lecture Notes in Logic, vol. 10, Association for Symbolic Logic, Urbana, IL, 2003.
[23]Linnebo Øystein, Some criteria for acceptable abstraction. Notre Dame Journal of Formal Logic, vol. 52 (2010), no. 3, pp. 331338.
[24]Marker David, Model Theory: An Introduction, Graduate Texts in Mathematics, vol. 217, Springer-Verlag, New York, 2002.
[25]Parsons Terence, On the consistency of the first-order portion of Frege’s logical system. Notre Dame Journal of Formal Logic, vol. 28 (1987), no. 1, pp. 161168, Reprinted in [6].
[26]Simpson Stephen G., Subsystems of Second Order Arithmetic, second ed., Cambridge University Press, Cambridge, 2009.
[27]Visser Albert, Categories of theories and interpretations, Logic in Tehran (Enayat Ali, Kalantari Iraj, and Moniri Mojtaba, editors), Lecture Notes in Logic, vol. 26, Association for Symbolic Logic, La Jolla, 2006, pp. 284341.
[28]Visser Albert, The predicative Frege hierarchy. Annals of Pure and Applied Logic, vol. 160 (2009), no. 2, pp. 129153.
[29]Walsh Sean, Comparing Hume’s principle, Basic Law V and Peano Arithmetic. Annals of Pure and Applied Logic, vol. 163 (2012), pp. 16791709.
[30]Walsh Sean, Logicism, interpretability, and knowledge of arithmetic. The Review of Symbolic Logic, vol. 7 (2014), no. 1, pp. 84119.
[31]Walsh Sean, Fragments of Frege’s Grundgesetze and Gödel’s constructible universe. The Journal of Symbolic Logic, http://arxiv.org/abs/1407.3861, forthcoming.
[32]Walsh Sean, Predicativity, the Russell-Myhill paradox, and Church’s intensional logic. The Journal of Philosophical Logic, http://dx.doi.org/10.1007/s10992-015-9375-5, http://arxiv.org/abs/1506.02206, forthcoming.
[33]Weyl Hermann, Das Kontinuum. Kritische Untersuchungen über die Grundlagen der Analysis, Veit, Leipzig, 1918.
[34]Wright Crispin, Frege’s Conception of Numbers as Objects, Scots Philosophical Monographs, vol. 2, Aberdeen University Press, Aberdeen, 1983.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Symbolic Logic
  • ISSN: 1079-8986
  • EISSN: 1943-5894
  • URL: /core/journals/bulletin-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 154 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.