[1]
Bienvenu, L., Day, A., Greenberg, N., Kučera, A., Miller, J., Nies, A., and Turetsky, D., *Computing K-trivial sets by incomplete random sets*, this Bulletin, vol. 20 (2014), pp. 80–90.

[2]
Bienvenu, L., Day, A. R., Hoyrup, M., Mezhirov, I., and Shen, A.,
*A constructive version of Birkhoff’s ergodic theorem for Martin-Löf random points*
. Information and Computation, vol. 210 (2012), pp. 21–30.

[3]
Bienvenu, L., Greenberg, N., Kučera, A., Nies, A., and Turetsky, D., *Coherent randomness tests and computing the K-trivial sets*. **
***Journal of the European Mathematical Society*
, 2015, to appear.

[4]
Bienvenu, L., Hölzl, R., Miller, J., and Nies, A.,
*Denjoy, Demuth, and Density*
. Journal of Mathematical Logic, 1450004, 2014, 35 p.

[5]
Birkhoff, G.,
*The mean ergodic theorem*
. Duke Mathematical Journal, vol. 5 (1939), no. 1, pp. 19–20.

[6]
Bogachev, V. I., Measure Theory, vol. I, II, Springer-Verlag, Berlin, 2007.

[7]
Brattka, V., Miller, J., and Nies, A.,
*Randomness and differentiability*
. Transactions of the AMS, vol. 368 (2016), pp. 581–605. ArXiv version at http://arxiv.org/abs/1104.4465.
[8]
Carothers, N. L., Real Analysis, Cambridge University Press, Cambridge, 2000.

[9]
Day, A. R. and Miller, J. S.,
*Cupping with random sets*
. Proceedings of the American Mathematical Society, vol. 142 (2014), no. 8, pp. 2871–2879.

[10]
Day, A. R. and Miller, J. S.,
*Density, forcing and the covering problem*
. Mathematical Research Letters, vol. 22 (2015), no. 3, pp. 719–727.

[11]
Demuth, O.,
*The differentiability of constructive functions of weakly bounded variation on pseudo numbers*
. Commentationes Mathematicae Universitatis Carolinae, vol. 16 (1975), no. 3, pp. 583–599 (In Russian).

[12]
Downey, R. and Hirschfeldt, D., Algorithmic Randomness and Complexity, Springer-Verlag, Berlin, 2010, 855 p.

[13]
Downey, R., Nies, A., Weber, R., and Yu, L., *Lowness and*
*nullsets*, this Journal, vol. 71 (2006), no. 3, pp. 1044–1052.

[14]
Durrett, R., Probability: Theory and Examples, second ed., Duxbury Press, Belmont, CA, 1996.

[15]
Figueira, S., Hirschfeldt, D., Miller, J., Ng, Selwyn, and Nies, A,
*Counting the changes of random*
*sets*
. Journal of Logic and Computation, vol. 25 (2015), pp. 1073–1089. Journal version of conference paper at CiE 2010.

[16]
Franklin, J., Greenberg, N., Miller, J. S., and Ng, K. M.,
*Martin-Löf random points satisfy Birkhoff’s ergodic theorem for effectively closed sets*
. Proceedings of the American Mathematical Society, vol. 140 (2012), no. 10, pp. 3623–3628.

[17]
Franklin, J. and Towsner, H.,
*Randomness and non-ergodic systems*
. Moscow Mathematical Journal, vol. 14 (2014), pp. 711–714.

[18]
Freer, C., Kjos-Hanssen, B., Nies, A., and Stephan, F.,
*Algorithmic aspects of lipschitz functions*
. Computability, vol. 3 (2014), no. 1, pp. 45–61.

[19]
Gács, P., Hoyrup, M., and Rojas, C.,
*Randomness on computable probability spaces - a dynamical point of view*
. Theory of Computing Systems, vol. 48 (2011), no. 3, 465–485.

[20]
Hoyrup, M. and Rojas, C.,
*Computability of probability measures and Martin-Löf randomness over metric spaces*
. Information and Computation, vol. 207 (2009), no. 7, pp. 830–847.

[21]
Kautz, S., Degrees of Random Sets, Ph.D. dissertation, Cornell University, Ithaca, NY, 1991.

[22]
Khan, M., *Lebesgue density and*
*-classes*. **
***Journal of Symbolic Logic*
, to appear.

[23]
Krengel, U., Ergodic Theorems, W. de Gruyter, Boston, 1985.

[24]
Kurtz, S., Randomness and genericity in the degrees of unsolvability, Ph.D. dissertation, University of Illinois, Urbana, 1981.

[25]
Lebesgue, H.,
**Leçons sur l’Intégration et la recherche des fonctions primitives**
. Gauthier-Villars, Paris, 1904.

[26]
Lebesgue, H.,
*Sur les intégrales singulières*
. Annales de la Faculte des Sciences de Toulouse sciences Mathematics Science Physics (3), vol. 1 (1909), pp. 25–117.

[27]
Lebesgue, H.,
*Sur l’intégration des fonctions discontinues*
. Annales scientifiques de l’ Ecole normale supérieure, vol. 27 (1910), pp. 361–450.

[28]
Li, M. and Vitányi, P., An Introduction to Kolmogorov Complexity and its Applications, second ed., Graduate Texts in Computer Science, Springer-Verlag, New York, 1997.

[30]
Miller, J. S. and Nies, A., *Randomness and computability: Open questions*, this Bulletin, vol. 12 (2006), no. 3, pp. 390–410.

[31]
Miyabe, K.,
*Characterization of Kurtz randomness by a differentiation theorem*
. Theory of Computing Systems, vol. 52 (2013), no. 1, pp. 113–132.

[32]
Morayne, M. and Solecki, S.,
*Martingale proof of the existence of Lebesgue points*
. Real Analysis Exchange, vol. 15 (1989/90), no. 1, pp. 401–406.

[33]
Nies, A., **
***Computability and Randomness*
, Oxford Logic Guides, vol. 51, Oxford University Press, Oxford, 2009, 444 p. Paperback version 2011.

[34]
Nies, A.,
*Differentiability of polynomial time computable functions*
, 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014) (Mayr, E. W. and Portier, N., editors), Leibniz International Proceedings in Informatics (LIPIcs), vol. 25, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2014, pp. 602–613.

[35]
Pathak, N., Rojas, C., and Simpson, S. G.,
*Schnorr randomness and the Lebesgue differentiation theorem*
. Proceedings of the American Mathematical Society, vol. 142 (2014), no. 1, pp. 335–349.

[36]
Pour-El, M. and Richards, J., Computability in Analysis and Physics, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1989.

[37]
Rudin, W., Real and Complex Analysis, third ed., McGraw-Hill, New York, 1987.

[38]
Schnorr, C. P.,
*Zufälligkeit und Wahrscheinlichkeit*
, Eine algorithmische Begründung der Wahrscheinlichkeitstheorie, vol. 218, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1971.

[39]
V’yugin, V.,
*Ergodic theorems for individual random sequences*
. Theoretical Computer Science, vol. 207 (1998), no. 2, pp. 343–361.

[40]
Weihrauch, K., Computable Analysis, Springer, Berlin, 2000.