[1]
Abraham, U. and Todorčević, S., Partition properties of ω_{1} compatible with CH, Fundamenta Mathematicae, vol. 152 (1997), pp. 165–181.

[2]
Balcar, B., Franek, F., and Hruška, J., Exhaustive zero-convergence structures on Boolean algebras, Acta Universitatis Carolinae. Mathematica et Physica, vol. 40 (1999), no. 2, pp. 27–41.

[3]
Balcar, B., Głowczyński, W., and Jech, T., The sequential topology on complete Boolean algebras, Fundamenta Mathematicae, vol. 155 (1998), no. 1, pp. 59–78.

[4]
Balcar, B., Jech, T., and Pazák, T., *Complete ccc Boolean algebras, the order sequential topology and a problem of von Neumann*, Preprint, http://arxiv.org/abs/math.LO/0312473, 12
2003.
[5]
Balcar, B., Jech, T., and Pazák, T., Complete ccc Boolean algebras, the order sequential topology and a problem of von Neumann, The Bulletin of the London Mathematical Society, vol. 37 (2005), pp. 885–898.

[6]
Banach, S. and Kuratowski, K., Sur une Géneralisation du Problème de la Mesure, Fundamenta Mathematicae, vol. 14 (1929), pp. 127–131.

[7]
Baumgartner, J. E., Iterated forcing, Surveys in set theory, London Mathematical Society Lecture Note Series, vol. 87, Cambridge University Press, Cambridge, 1983, pp. 1–59.

[8]
Farah, I. and Velickovic, B., Von Neumann's problem and large cardinals, The Bulletin of the London Mathematical Society, to appear.

[9]
Fremlin, D. H., Measure algebras, Handbook of Boolean algebras, vol. 3, North-Holland Publishing Company, Amsterdam, 1989, pp. 877–980.

[10]
Fremlin, D. H., Measure theory, vol. 1–4, Torres Fremlin, Colchester, 2000–2004.

[11]
Fremlin, D. H., *Problems*, Unpublished notes, 01
2004.

[12]
Fremlin, D. H., *Maharam algebras*, Unpublished notes, 12
2004.

[13]
Główczyński, W., Measures on Boolean algebras, Proceedings of the American Mathematical Society, vol. 111 (1991), no. 3, pp. 845–849.

[14]
Gray, C., Iterated forcing from the strategic point of view, PhD Thesis, Berkeley, 1982.

[15]
Hewitt, E. and Ross, K. A., Abstract harmonic analysis, vol. I, Springer-Verlag, Berlin, 1979.

[16]
Horn, A. and Tarski, A., Measures in Boolean algebras, Transactions of the American Mathematical Society, vol. 64 (1948), pp. 467–497.

[17]
Jech, T., Non-provability of Souslin's hypothesis, Commentationes Mathematicae Universitatis Carolinae, vol. 8 (1967), pp. 291–305.

[18]
Jech, T., More game-theoretic properties of Boolean algebras, Annals of Pure and Applied Logic, vol. 26 (1984), pp. 11–29.

[19]
Jech, T., Set theory, the third millennium edition, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002.

[20]
Kakutani, S., Über die Metrisation der topologischen Gruppen, Proceedings of the Imperial Academy, Tokyo, vol. 12 (1936), pp. 82–84.

[21]
Kalton, N. J. and Roberts, J. W., Uniformly exhaustive submeasures and nearly additive set functions, Transactions of the American Mathematical Society, vol. 278 (1983), pp. 803–816.

[22]
Kantorovič, L. V., Vulikh, B. Z., and Pinsker, A. G., Functional analysis in partially ordered spaces, 1950, in Russian.

[23]
Kelley, J. L., Measures on Boolean algebras, Pacific Journal of Mathematics, vol. 9 (1959), pp. 1165–1177.

[24]
Koppelberg, S., Handbook of Boolean algebras, vol. 1, North-Holland Publishing Company, Amsterdam, 1989.

[25]
Kurepa, D., Ensembles ordonnés et ramifiés, Publicationes Mathematicae, University of Belgrade, vol. 4 (1935), pp. 1–138, Zbl. 014.39401.

[26]
Maharam, D., On homogeneous measure algebras, Proceedings of the National Academy of Sciences of the United States of America, vol. 28 (1942), pp. 108–111.

[27]
Maharam, D., An algebraic characterization of measure algebras, Annals of Mathematics. Second Series, vol. 48 (1947), pp. 154–167.

[28]
Mauldin, D. (editor), The Scottish Book, Birkhäuser Boston, Massachusetts, 1981.

[29]
Miller, E. W., A note on Souslin's problem, American Journal of Mathematics, vol. 65 (1943), pp. 673–678.

[30]
Monk, J. D. (editor), Handbook of Boolean algebras, North-Holland Publishing Company, Amsterdam, 1989.

[31]
Quickert, S., CH and the Sacks property, Fundamenta Mathematicae, vol. 171 (2002), no. 1, pp. 93–100.

[32]
Shelah, S., Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin, 1982.

[33]
Solovay, R. M. and Tennenbaum, S., Iterated Cohen extensions and Souslin's problem, Annals of Mathematics. Second Series, vol. 94 (1971), pp. 201–245.

[34]
Suslin, M., Problème 3, Fundamenta Mathematicae, vol. 1 (1920), p. 223.

[35]
Marczewski, E. Szpilrajn, Remarques sur les fonctions complètement additives d'ensemble et sur les ensembles jouissant de la propriété de Baire, Fundamenta Mathematicae, vol. 22 (1934), pp. 303–311.

[36]
Talagrand, M., *Maharam's problem*, Manuscript in preparation, 01
2006.

[37]
Tennenbaum, S., Souslin's problem, Proceedings of the National Academy of Sciences of the United States of America, vol. 59 (1968), pp. 60–63.

[38]
Todorcevic, S., A dichotomy for P-ideals of countable sets, Fundamenta Mathematicae, vol. 166 (2000), no. 3, pp. 251–267.

[39]
Todorcevic, S., A problem of von Neumann and Maharam about algebras supporting continuous submeasures, Fundamenta Mathematicae, vol. 183 (2004), pp. 169–183.

[40]
Velickovic, B., CCC forcing and splitting reals, Israel Journal of Mathematics, vol. 147 (2005).

[41]
Vladimirov, D. A., Boolean algebras in analysis, Mathematics and its Applications, vol. 540, Kluwer Academic Publishers, Dordrecht, 2002, Translated from the Russian manuscript, Foreword and appendix by Kutateladze, S. S..

[42]
von Neumann, J., Continuous geometry, The Institute for Advanced Study, 1936–1937, Notes by L. Roy Wilcox on lectures given during 1935–36 and 1936–37 at the Institute for Advanced Study.

[43]
von Neumann, J., Continuous geometry, Princeton University Press, Princeton, New Jersey, 1960.