Skip to main content

What Does it Take to Prove Fermat's Last Theorem? Grothendieck and the Logic of Number Theory

  • Colin McLarty (a1)

This paper explores the set theoretic assumptions used in the current published proof of Fermat's Last Theorem, how these assumptions figure in the methods Wiles uses, and the currently known prospects for a proof using weaker assumptions.

Hide All
[1972] Artin, M., Grothendieck, A., and Verdier, J.-L., Théorie des topos et cohomologie etale des schémas, Séminaire de Géométrie Algébrique du Bois-Marie, 4, Springer-Verlag, 1972, three volumes, generally cited as SGA 4.
[2003] Avigad, J., Number theory and elementary arithmetic, Philosophia Mathematica, vol. 11 (2003), pp. 257284.
[2009] Basbois, N., La naissance de la cohomologie des groupes, Ph.D. thesis, Université de Nice Sophia-Antipolis, 2009.
[2008] Carter, J., Categories for the working mathematician: Making the impossible possible, Synthese, vol. 162 (2008), pp. 113.
[1997] Cornell, G., Silverman, J., and Stevens, G. (editors), Modular forms and Fermat's Last Theorem, Springer-Verlag, 1997.
[1974] Deligne, P., La conjecture de Weil I, Publications Mathématiques. Institut de Hautes Études Scientifiques, (1974), no. 43, pp. 273307.
[1977] Deligne, P. (editor), Cohomologie étale, 1977, Séminaire de Géométrie Algébrique du Bois-Marie; SGA 4 1/2, Springer-Verlag. Generally cited as SGA 4 1/2, this is not strictly a report on Grothendieck's Seminar.
[1998] Deligne, P., Quelques idées maîtresses de l'œuvre de A. Grothendieck, Matériaux pour l'histoire des mathématiques au XXe siècle (Nice, 1996), Société Mathématique de France, 1998, pp. 1119.
[2009] Deligne, P., Colloque Grothendieck, Pierre Deligne, video by IHES Science, on-line at, 2009.
[1973] Deligne, P. and Rapoport, M., Les schémas de modules de courbes elliptiques, Modular functions of one variable, II, Lecture Notes in Mathematics, vol. 349, Springer-Verlag, New York, 1973, pp. 143316.
[2008] Ellenberg, J., Arithmetic geometry, Princeton companion to mathematics (Gowers, T., Barrow-Green, J., and Leader, I., editors), Princeton University Press, 2008, pp. 372383.
[1983] Faltings, G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Inventiones Mathematicae, vol. 73 (1983), pp. 349366.
[2005] Fantechi, B., Vistoli, A., Gottsche, L., Kleiman, S. L., Illusie, L., and Nitsure, N., Fundamental algebraic geometry: Grothendieck's FGA explained, Mathematical Surveys and Monographs, vol. 123, American Mathematical Society, Providence, 2005.
[1964] Freyd, P., Abelian categories: An introduction to the theory of functors, Harper and Row, 1964, reprinted with author commentary in: Reprints in Theory and Applications of Categories , (2003), no. 3, pp. –25164, available on-line at
[1957] Grothendieck, A., Sur quelques points d'algèbre homologique, Tôhoku Mathematical Journal, vol. 9 (1957), pp. 119221.
[1971] Grothendieck, A., Revêtements étales et groupe fondamental, Séminaire de Géométrie Algébrique du Bois-Marie, 1, Springer-Verlag, 1971, generally cited as SGA1.
[1985] Grothendieck, A., Récoltes et semailles, Université des Sciences et Techniques du Languedoc, Montpellier, 1985, published in several successive volumes.
[1961] Grothendieck, A. and Dieudonné, J., Éléments de géométrie algébrique III: Étude cohomologique des faisceaux cohérents, Publications Mathématiques. Institut des Hautes Études Scientifiques, Paris, (1961), no. 11.
[1971] Grothendieck, A., Éléments de géométrie algébrique I, Springer-Verlag, 1971.
[1966] Hartshorne, R., Residues and duality, lecture notes of a seminar on the work of A. Grothendieck given at Harvard 1963–64, Lecture Notes in Mathematics, no. 20, Springer-Verlag, New York, 1966.
[1977] Hartshorne, R., Algebraic geometry, Springer-Verlag, 1977.
[1973] Herrlich, H. and Strecker, G., Category theory, Allyn and Bacon, Boston, 1973.
[2009] Lipman, J. and Hashimoto, M., Foundations of Grothendieck duality for diagrams of schemes, Springer-Verlag, 2009.
[2009] Lurie, J., Higher topos theory, Annals of Mathematics Studies, no. 170, Princeton University Press, Princeton, 2009.
[1988] Lane, S. Mac, Group extensions for 45 years, Mathematical Intelligencer, vol. 10 (1988), no. 2, pp. 2935.
[2003] Macintyre, A., Model theory: Geometrical and set-theoretic aspects and prospects, this Bulletin, vol. 9 (2003), no. 2, pp. 197212.
[forthcoming] Macintyre, A., The impact of Gödel's incompleteness theorems on mathematics, Horizons of truth: Proceedings of Gödel centenary, Vienna, 2006 , forthcoming.
[1977] Mazur, B., Modular curves and the Eisenstein ideal, Publications Mathématiques. Institut des Hautes Études Scientifiques, vol. 47 (1977), pp. 133186.
[1997] Mazur, B., Introduction to the deformation theory of Galois representations, Modular forms and Fermat's Last Theorem (Cornell, G., Silverman, J., and Stevens, S., editors), Springer-Verlag, 1997, pp. 243312.
[2007] McLarty, C., The rising sea: Grothendieck on simplicity and generality I, Episodes in the history of recent algebra (Gray, J. and Parshall, K., editors), American Mathematical Society, 2007, pp. 301326.
[2008] McLarty, C., “There is no ontology here”: visual and structural geometry in arithmetic, The philosophy of mathematical practice (Mancosu, P., editor), Oxford University Press, 2008, pp. 370406.
[1950] Mostowski, A., Some impredicative definitions in the axiomatic set theory, Fundamenta Mathematicae, vol. 37 (1950), pp. 111124.
[1978] Mumford, D. and Tate, J., Fields Medals IV. An instinct for the key idea, Science, vol. 202 (1978), pp. 737739.
[2008] Osserman, B., The Weil conjectures, Princeton companion to mathematics (Gowers, T., Barrow-Green, J., and Leader, I., editors), Princeton University Press, 2008, pp. 729732.
[1978] Takeuti, G., A conservative extension of Peano Arithmetic, Two applications of logic to mathematics, Princeton University Press, 1978, pp. 77135.
[2008] Totaro, B., Algebraic topology, Princeton companion to mathematics (Gowers, T., Barrow-Green, J., and Leader, I., editors), Princeton University Press, 2008, pp. 383396.
[1997] Washington, L., Galois cohomology, Modular forms and Fermat's Last Theorem (Cornell, G., Silverman, J., and Stevens, S., editors), Springer-Verlag, 1997, pp. 101120.
[1995] Wiles, A., Modular elliptic curves and Fermat's Last Theorem, Annals of Mathematics, vol. 141 (1995), pp. 443551.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Symbolic Logic
  • ISSN: 1079-8986
  • EISSN: 1943-5894
  • URL: /core/journals/bulletin-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed