Skip to main content Accesibility Help
×
×
Home

EXISTENCE OF S-ASYMPTOTICALLY ω-PERIODIC SOLUTIONS FOR ABSTRACT NEUTRAL EQUATIONS

  • HERNÁN R. HENRÍQUEZ (a1), MICHELLE PIERRI (a2) and PLÁCIDO TÁBOAS (a3)
Abstract

A bounded continuous function is said to be S-asymptotically ω-periodic if . This paper is devoted to study the existence and qualitative properties of S-asymptotically ω-periodic mild solutions for some classes of abstract neutral functional differential equations with infinite delay. Furthermore, applications to partial differential equations are given.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      EXISTENCE OF S-ASYMPTOTICALLY ω-PERIODIC SOLUTIONS FOR ABSTRACT NEUTRAL EQUATIONS
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      EXISTENCE OF S-ASYMPTOTICALLY ω-PERIODIC SOLUTIONS FOR ABSTRACT NEUTRAL EQUATIONS
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      EXISTENCE OF S-ASYMPTOTICALLY ω-PERIODIC SOLUTIONS FOR ABSTRACT NEUTRAL EQUATIONS
      Available formats
      ×
Copyright
Corresponding author
For correspondence; e-mail: michelle@icmc.sc.usp.br
References
Hide All
[1]Adimy, M. and Ezzinbi, K., ‘A class of linear partial neutral functional-differential equations with nondense domain’, J. Differential Equations 147(2) (1998), 285332.
[2]Ananjevskii, I. M. and Kolmanovskii, V. B., ‘Stabilization of some nonlinear hereditary mechanical systems’, Nonlinear Anal. 15(2) (1990), 101114.
[3]Castillo, G. and Henríquez, H. R., ‘Almost-periodic solutions for a second order abstract Cauchy problem’, Acta Math. Hungar. 106(1–2) (2005), 2739.
[4]Clément, Ph. and Nohel, J. A., ‘Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels’, SIAM J. Math. Anal. 12(4) (1981), 514535.
[5]Diagana, T., Henríquez, H. R. and Hernández, E., ‘Almost automorphic mild solutions to some partial neutral functional-differential equations and applications’, Nonlinear Anal. 69(5–6) (2008), 14851493.
[6]Grimmer, R. C., ‘Asymptotically almost periodic solutions of differential equations’, SIAM J. Appl. Math. 17 (1969), 109115.
[7]Gurtin, M. E. and Pipkin, A. C., ‘A general theory of heat conduction with finite wave speed’, Arch. Ration. Mech. Anal. 31 (1968), 113126.
[8]Haiyin, G., Wang, K., Fengying, W. and Xiaohua, D., ‘Massera-type theorem and asymptotically periodic logistic equations’, Nonlinear Anal. Real World Appl. 7 (2006), 12681283.
[9]Hale, J. K., ‘Partial neutral functional-differential equations’, Rev. Roumaine Math. Pures Appl. 39(4) (1994), 339344.
[10]Henríquez, H. R., ‘Approximation of abstract functional differential equations with unbounded delay’, Indian J. Pure Appl. Math. 27(4) (1996), 357386.
[11]Henríquez, H. R. and Vásquez, C. H., ‘Almost periodic solutions of abstract retarded functional differential equations with unbounded delay’, Acta Appl. Math. 57(2) (1999), 105132.
[12]Hernández, E., ‘Existence results for partial neutral integrodifferential equations with unbounded delay’, J. Math. Anal. Appl. 292(1) (2004), 194210.
[13]Hernández, E., A comment on the papers ‘Controllability results for functional semilinear differential inclusions in Fréchet spaces’, Nonlinear Anal. 61(3) (2005), 405–423 and ‘Controllability of impulsive neutral functional differential inclusions with infinite delay’ Nonlinear Anal. 60(8) (2005), 1533–1552; Nonlinear Anal. 66(10) (2007), 2243–2245.
[14]Hernández, E. and Diagana, T., ‘Existence and uniqueness of pseudo almost periodic solutions to some abstract partial neutral functional differential equations and applications’, J. Math. Anal. Appl. 327(2) (2007), 776791.
[15]Hernández, E. and Henríquez, H. R., ‘Existence results for partial neutral functional differential equations with unbounded delay’, J. Math. Anal. Appl. 221(2) (1998), 452475.
[16]Hernández, E. and Henríquez, H. R., ‘Existence of periodic solutions of partial neutral functional differential equations with unbounded delay’, J. Math. Anal. Appl. 221(2) (1998), 499522.
[17]Hernández, E. and Pelicer, M., ‘Asymptotically almost periodic and almost periodic solutions for partial neutral differential equations’, Appl. Math. Lett. 18(11) (2005), 12651272.
[18]Hino, Y. and Murakami, S., ‘Limiting equations and some stability properties for asymptotically almost periodic functional differential equations with infinite delay’, Tôhoku Math. J. (2) 54(2) (2002), 239257.
[19]Hino, Y., Murakami, S. and Naito, T., Functional-differential Equations with Infinite Delay, Lecture Notes in Mathematics, 1473 (Springer, Berlin, 1991).
[20]Hino, Y., Naito, T., Minh, N. V. and Shin, J. S., Almost Periodic Solutions of Differential Equations in Banach Spaces (Taylor and Francis, London, 2002).
[21]Kwon, W. H., Lee, G. W. and Kim, S. W., ‘Performance improvement using time delays in multivariable controller design’, Internat. J. Control 52(6) (1990), 14551473.
[22]Liang, B., ‘Zhong Chao Asymptotically periodic solutions of a class of second order nonlinear differential equations’, Proc. Amer. Math. Soc. 99(4) (1987), 693699.
[23]Lunardi, A., ‘Alessandra On the linear heat equation with fading memory’, SIAM J. Math. Anal. 21(5) (1990), 12131224.
[24]Lunardi, A., ‘Analytic semigroups and optimal regularity in parabolic problems’, in: Progress in Nonlinear Differential Equations and Their Applications, Vol. 16 (Birkhäuser, Basel, 1995).
[25]Minh Man, N. and Van Minh, N., ‘On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations’, Commun. Pure Appl. Anal. 3(2) (2004), 291300.
[26]Murakami, S., Naito, T. and Nguyen, M., ‘Van Massera’s theorem for almost periodic solutions of functional differential equations’, J. Math. Soc. Japan 56(1) (2004), 247268.
[27]Nunziato, J. W., ‘On heat conduction in materials with memory’, Quart. Appl. Math. 29 (1971), 187204.
[28]Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (Springer, New York, 1983).
[29]Sforza, D., ‘Existence in the large for a semilinear integrodifferential equation with infinite delay’, J. Differential Equations 120(2) (1995), 289303.
[30]Utz, W. R., ‘Waltman, Paul asymptotic almost periodicity of solutions of a system of differential equations’, Proc. Amer. Math. Soc. 18 (1967), 597601.
[31]Wong, J. S. W. and Burton, T. A., ‘Some properties of solutions of u′′(t)+a(t)f(u)g(u′)=0 II’, Monatsh. Math. 69 (1965), 368374.
[32]Wu, J., Theory and Applications of Partial Functional-differential Equations, Applied Mathematical Sciences, 119 (Springer, New York, 1996).
[33]Wu, J. and Xia, H., ‘Self-sustained oscillations in a ring array of coupled lossless transmission lines’, J. Differential Equations 124(1) (1996), 247278.
[34]Wu, J. and Xia, H., ‘Rotating waves in neutral partial functional-differential equations’, J. Dynam. Differential Equations 11(2) (1999), 209238.
[35]Yuan, R., ‘Existence of almost periodic solutions of neutral functional-differential equations via Liapunov–Razumikhin function’, Z. Angew. Math. Phys. 49(1) (1998), 113136.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of the Australian Mathematical Society
  • ISSN: 0004-9727
  • EISSN: 1755-1633
  • URL: /core/journals/bulletin-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed