[1]
Adjan, S. I., ‘Defining relations and algorithmic problems for groups and semigroups’, in: Proceeding of the Steklov Institute of Mathematics, 85 (American Mathematical Society, Providence, 1967).

[2]
Akian, M., Bapat, R. and Gaubert, S., ‘Max-plus algebra’, in: Handbook of Linear Algebra (eds. Hogben, L.
et al. ) (Chapman and Hall, London, 2006).

[3]
Auinger, K., Chen, Y., Hu, X., Luo, Y. and Volkov, M. V., ‘The finite basis problem for Kauffman monoids’, Algebra Universalis
74 (2015), 333–350.

[4]
Burris, S. and Sankappanavar, H. P., A Course in Universal Algebra (Springer, New York, 1981).

[5]
Butkovic̆, P., ‘Max-algebra: the linear algebra of combinatorics?’, Linear Algebra Appl.
367 (2003), 313–335.

[6]
Cohen, G., Gaubert, S. and Quadrat, J. P., ‘Max-plus algebra and system theory: where we are and where to go now’, Annu. Rev. Control
23 (1999), 207–219.

[7]
Cuninghame-Green, R., ‘Minimax algebra’, Lecture Notes in Econom. and Math. Systems
166 (1979), 1–258.

[8]
Howie, J. M., Fundamentals of Semigroup Theory (Clarendon Press, Oxford, 1995).

[9]
Izhakian, Z. and Margolis, S. W., ‘Semigroup identities in the monoid of two-by-two tropical matrices’, Semigroup Forum
80(2) (2010), 191–218.

[10]
Izhakian, Z., ‘Semigroup identities in the monoid of triangular tropical matrices’, Semigroup Forum
88(1) (2014), 145–161.

[11]
Johnson, M. and Kambites, M., ‘Multiplicative structure of 2 × 2 tropical matrices’, Linear Algebra Appl.
435 (2011), 1612–1625.

[12]
Lee, E. W. H., ‘A sufficient condition for the non-finite basis property of semigroups’, Monatsh. Math.
168(3–4) (2012), 461–472.

[13]
Lee, E. W. H., Li, J. R. and Zhang, W. T., ‘Minimal non-finitely based semigroups’, Semigroup Forum
85(3) (2012), 577–580.

[14]
Li, J. R., Zhang, W. T. and Luo, Y. F., ‘On the finite basis problem for the variety generated by all *n*-element semigroups’, Algebra Universalis
73 (2015), 225–248.

[15]
Luo, Y. F. and Zhang, W. T., ‘On the variety generated by all semigroups of order three’, J. Algebra
334 (2011), 1–30.

[16]
McKenzie, R., ‘Tarski’s finite basis problem is undecidable’, Internat. J. Algebra Comput.
6 (1996), 49–104.

[17]
Pachter, L. and Sturmfels, B., ‘Tropical geometry of statistical models’, Proc. Natl. Acad. Sci. USA
101(46) (2004), 16132–16137.

[18]
Pastijn, F., ‘Polyhedral convex cones and the equational theory of the bicyclic semigroup’, J. Aust. Math. Soc.
81 (2006), 63–96.

[19]
Perkins, P., ‘Bases for equational theories of semigroups’, J. Algebra
11 (1969), 298–314.

[20]
Sapir, M. V., ‘Problems of Burnside type and the finite basis property in varieties of semigroups’, Math. USSR Izv.
30(2) (1988), 295–314.

[21]
Sapir, O. B., ‘Non-finitely based monoids’, Semigroup Forum
90(3) (2015), 557–586.

[22]
Sapir, O. B., ‘Finitely based monoids’, Semigroup Forum
90(3) (2015), 587–614.

[23]
Shneerson, L. M., ‘On the axiomatic rank of varieties generated by a semigroup or monoid with one defining relation’, Semigroup Forum
39 (1989), 17–38.

[24]
Shleifer, F. G., ‘Looking for identities on a bicyclic semigroup with computer assistance’, Semigroup Forum
41 (1990), 173–179.

[25]
Shitov, Y., ‘Tropical matrices and group representations’, J. Algebra
370 (2012), 1–4.

[26]
Simon, I., ‘On semigroups of matrices over the tropical semiring’, RAIRO Theor. Inform. Appl.
28(3–4) (1994), 277–294.

[27]
Volkov, M. V., ‘The finite basis question for varieties of semigroups’, Math. Notes
45(3) (1989), 187–194; [translation of *Mat. Zametki*
**45**(3) (1989), 12–23].

[28]
Volkov, M. V., ‘The finite basis problem for finite semigroups’, Sci. Math. Jpn.
53 (2001), 171–199.

[29]
Zhang, W. T., Li, J. R. and Luo, Y. F., ‘On the variety generated by the monoid of triangular 2 × 2 matrices over a two-element field’, Bull. Aust. Math. Soc.
86(1) (2012), 64–77.

[30]
Zhang, W. T., Li, J. R. and Luo, Y. F., ‘Hereditarily finitely based semigroups of triangular matrices over finite fields’, Semigroup Forum
86(2) (2013), 229–261.

[31]
Zhang, W. T. and Luo, Y. F., ‘A new example of non-finitely based semigroups’, Bull. Aust. Math. Soc.
84 (2011), 484–491.