Skip to main content Accessibility help
×
×
Home

FRACTIONAL INTEGRAL OPERATORS IN NONHOMOGENEOUS SPACES

  • H. GUNAWAN (a1), Y. SAWANO (a2) and I. SIHWANINGRUM (a3)
Abstract

We discuss here the boundedness of the fractional integral operator Iα and its generalized version on generalized nonhomogeneous Morrey spaces. To prove the boundedness of Iα, we employ the boundedness of the so-called maximal fractional integral operator Ia,κ*. In addition, we prove an Olsen-type inequality, which is analogous to that in the case of homogeneous type.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      FRACTIONAL INTEGRAL OPERATORS IN NONHOMOGENEOUS SPACES
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      FRACTIONAL INTEGRAL OPERATORS IN NONHOMOGENEOUS SPACES
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      FRACTIONAL INTEGRAL OPERATORS IN NONHOMOGENEOUS SPACES
      Available formats
      ×
Copyright
Corresponding author
For correspondence; e-mail: hgunawan@math.itb.ac.id
References
Hide All
[1] Adams, D., ‘A note on Riesz potentials’, Duke Math. J. 42 (1975), 765778.
[2] Davies, E. B., Heat Kernels and Spectral Theory (Cambridge University Press, Cambridge, 1989).
[3] Eridani,  , Gunawan, H. and Nakai, E., ‘On generalized fractional integral operators’, Sci. Math. Jpn. 60 (2004), 539550.
[4] García-Cuerva, J. and Gatto, E., ‘Boundedness properties of fractional integral operators associated to non-doubling measures’, Studia Math. 162 (2004), 245261.
[5] Gunawan, H. and Eridani,  , ‘Fractional integrals and generalized Olsen inequalities’, Kyungpook Math. J. 49 (2009), 3139.
[6] Hardy, G. H. and Littlewood, J. E., ‘Some properties of fractional integrals. I’, Math. Z. 27 (1927), 565606.
[7] Hardy, G. H. and Littlewood, J. E., ‘Some properties of fractional integrals. II’, Math. Z. 34 (1932), 403439.
[8] Kurata, K., Nishigaki, S. and Sugano, S., ‘Boundedness of integral operators on generalized Morrey spaces and its application to Schrödinger operators’, Proc. Amer. Math. Soc. 128 (2002), 11251134.
[9] Nakai, E., ‘On generalized Fractional integrals in the Orlicz spaces on spaces of homogeneous type’, Sci. Math. Jpn. 54 (2001), 473487 (e4: 901–915).
[10] Nakai, E. and Sumitomo, H., ‘On generalized Riesz potentials and spaces of some smooth functions’, Sci. Math. Jpn. 54 (2001), 463472 (e4: 891–901).
[11] Nazarov, F., Treil, S. and Volberg, A., ‘Weak type estimates and Cotlar inequalities for Calderón–Zygmund operators on nonhomogeneous spaces’, Internat. Math. Res. Notices 9 (1998), 463487.
[12] Nazarov, F., Treil, S. and Volberg, A., ‘The Tb-theorem on non-homogeneous spaces’, Acta Math. 190 (2003), 151239.
[13] Olsen, P. A., ‘Fractional integration, Morrey spaces and a Schrödinger equation’, Comm. Partial Differential Equations 20 (1995), 20052055.
[14] Sawano, Y., ‘Generalized Morrey spaces for non-doubling measures’, Non-linear Differential Equations Appl. 15 (2008), 413425.
[15] Sawano, Y., Sobukawa, T. and Tanaka, H., ‘Limiting case of the boundedness of fractional integral operators on non-homogeneous space’, J. Inequal. Appl. (2006), Art. ID 92470, 16pp.
[16] Sobolev, S. L., ‘On a theorem in functional analysis’ (in Russian), Mat. Sb. 46 (1938), 471–497. (English translation in Amer. Math. Soc. Transl. Ser. (2) 34 (1963), 39–68.).
[17] Stein, E. M., Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, NJ, 1970).
[18] Tolsa, X., ‘BMO, H 1, and Calderón–Zygmund operators for non doubling measures’, Math. Ann. 319 (2001), 89149.
[19] Torchinsky, A., Real-variable Methods in Harmonic Analysis (Academic Press, New York, 1986).
[20] Verdera, J., ‘The fall of the doubling condition in Calderón–Zygmund theory’, Publ. Mat. (2002), 275292 (Special Volume).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of the Australian Mathematical Society
  • ISSN: 0004-9727
  • EISSN: 1755-1633
  • URL: /core/journals/bulletin-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed