Skip to main content Accesibility Help
×
×
Home

INTEGER POLYGONS OF GIVEN PERIMETER

  • JAMES EAST (a1) and RON NILES (a2)
Abstract

A classical result of Honsberger states that the number of incongruent triangles with integer sides and perimeter $n$ is the nearest integer to $n^{2}/48$ ( $n$  even) or $(n+3)^{2}/48$ ( $n$  odd). We solve the analogous problem for $m$ -gons (for arbitrary but fixed $m\geq 3$ ) and for polygons (with arbitrary number of sides).

Copyright
Corresponding author
References
Hide All
[1] Andrews, G. E., ‘A note on partitions and triangles with integer sides’, Amer. Math. Monthly 86(6) (1979), 477478.
[2] Andrews, G. E., Paule, P. and Riese, A., ‘MacMahon’s partition analysis. IX. k-gon partitions’, Bull. Aust. Math. Soc. 64(2) (2001), 321329.
[3] Cameron, P. J., Combinatorics: Topics, Techniques, Algorithms (Cambridge University Press, Cambridge, 1994).
[4] Dickson, L. E., History of the Theory of Numbers. Vol. II: Diophantine Analysis (Chelsea, New York, 1966).
[5] Hirschhorn, M. D., ‘Triangles with integer sides, revisited’, Math. Mag. 73(1) (2000), 5356.
[6] Hirschhorn, M. D., ‘Triangles with integer sides’, Math. Mag. 76(4) (2003), 306308.
[7] Honsberger, R., Mathematical Gems. III, The Dolciani Mathematical Expositions, 9 (Mathematical Association of America, Washington, DC, 1985).
[8] Jenkyns, T. and Muller, E., ‘Triangular triples from ceilings to floors’, Amer. Math. Monthly 107(7) (2000), 634639.
[9] Jordan, J. H., Walch, R. and Wisner, R. J., ‘Triangles with integer sides’, Amer. Math. Monthly 86(8) (1979), 686689.
[10] Krier, N. and Manvel, B., ‘Counting integer triangles’, Math. Mag. 71(4) (1998), 291295.
[11] Marsden, M. J., ‘Triangles with integer-valued sides’, Amer. Math. Monthly 81 (1974), 373376.
[12] Phelps, R. R. and Fine, N. J., ‘Perfect triangles’, Amer. Math. Monthly 63 (1956), 4344.
[13] Singmaster, D., ‘Triangles with integer sides and sharing barrels’, College Math. J. 21(4) (1990), 278285.
[14] Subbarao, M. V., ‘Perfect triangles’, Amer. Math. Monthly 78 (1971), 384385.
[15] The Online Encyclopedia of Integer Sequences (2018), published electronically at http://oeis.org/.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of the Australian Mathematical Society
  • ISSN: 0004-9727
  • EISSN: 1755-1633
  • URL: /core/journals/bulletin-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed