Hostname: page-component-65f69f4695-vv84r Total loading time: 0 Render date: 2025-06-30T19:09:44.898Z Has data issue: false hasContentIssue false

A MORDELL–LANG-TYPE PROBLEM FOR $\mathrm{GL}_{m}$

Published online by Cambridge University Press:  04 October 2024

JASON BELL
Affiliation:
Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada e-mail: jpbell@uwaterloo.ca
DRAGOS GHIOCA*
Affiliation:
Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, British Columbia V6T 1Z2, Canada
YIFENG HUANG
Affiliation:
Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, British Columbia V6T 1Z2, Canada e-mail: huangyf@math.ubc.ca

Abstract

We prove a nonabelian variant of the classical Mordell–Lang conjecture in the context of finite- dimensional central simple algebras. We obtain the following result as a particular case of a more general statement. Let K be an algebraically closed field of characteristic zero, let $B_1,\dots ,B_r\in \mathrm {GL}_m(K)$ be matrices with multiplicatively independent eigenvalues and let V be a closed subvariety of $\mathrm {GL}_m(K)$ not passing through zero. Then there exist only finitely many elements of $\mathrm {GL}_m(K)$ of the form $B_1^{n_1}\cdots B_r^{n_r}$ (as we vary $n_1,\dots ,n_r$ in $\mathbb {Z}$) lying on the subvariety V.

Information

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bell, J. P., Ghioca, D. and Tucker, T. J., The Dynamical Mordell–Lang Conjecture, Mathematical Surveys and Monographs, 210 (American Mathematical Society, Providence, RI, 2016).CrossRefGoogle Scholar
Cerlienco, L., Mignotte, M. and Piras, F., ‘Suites recurrentes linéaires’, Enseign. Math. 33 (1987), 67108.Google Scholar
Derksen, H. and Masser, D., ‘Linear equations over multiplicative groups, recurrences, and mixing II’, Indag. Math. (N.S.) 26(1) (2015), 113136.CrossRefGoogle Scholar
Faltings, G., ‘The general case of S. Lang’s conjecture’, in: Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991), Perspectives in Mathematics, 15 (eds. Cristante, V. and Messing, W.) (Academic Press, San Diego, CA, 1994), 175182.CrossRefGoogle Scholar
Ghioca, D., Hu, F., Scanlon, T. and Zannier, U., ‘A variant of the Mordell–Lang conjecture’, Math. Res. Lett. 26(5) (2019), 13831392.CrossRefGoogle Scholar
Ghioca, D., Tucker, T. J. and Zieve, M. E., ‘The Mordell–Lang question for endomorphisms of semiabelian varieties’, J. Théor. Nombres Bordeaux 23(3) (2011), 645666.CrossRefGoogle Scholar
Huang, Y., ‘Unit equations on quaternions’, Q. J. Math. 71(4) (2020), 15211534.CrossRefGoogle Scholar
Laurent, M., ‘Équations diophantiennes exponentielles’, Invent. Math. 78 (1984), 299327.CrossRefGoogle Scholar
Matiyasevich, Y. V., Hilbert’s Tenth Problem, Foundations of Computing Series (MIT Press, Cambridge, MA, 1993).Google Scholar
Scanlon, T. and Yasufuku, Y., ‘Exponential-polynomial equations and dynamical return sets’, Int. Math. Res. Not. IMRN 2014(16) (2014), 43574367.CrossRefGoogle Scholar
Schlickewei, H. P., ‘ $S$ -unit equations over number fields’, Invent. Math. 102(1) (1990), 95107.CrossRefGoogle Scholar
Vojta, P., ‘Integral points on subvarieties of semiabelian varieties. I’, Invent. Math. 126(1) (1996), 133181.CrossRefGoogle Scholar