Hostname: page-component-7857688df4-7g6pc Total loading time: 0 Render date: 2025-11-13T11:31:19.621Z Has data issue: false hasContentIssue false

ON ADDITIVE COMPLEMENTS IN THE COMPLEMENT OF A SET OF NATURAL NUMBERS

Published online by Cambridge University Press:  07 November 2025

BHUWANESH RAO PATIL
Affiliation:
Department of Mathematics, Ram Prasad Singh College Chakeyaj , Mahnar, Vaishali, India and Department of Mathematics, Indian Institute of Technology Roorkee, 247667, India e-mail: bhuwanesh1989@gmail.com
MOHAN*
Affiliation:
Department of Applied Sciences and Humanities, B K Birla Institute of Engineering and Technology, Pilani, India and Department of Mathematics, Indian Institute of Technology Roorkee , 247667, India

Abstract

Let A be a set of natural numbers. A set B of natural numbers is an additive complement of the set A if all sufficiently large natural numbers can be represented in the form $x+y$, where $x\in A$ and $y\in B$. We establish that if $A=\{a_i: i\in \mathbb {N}\}$ is a set of natural numbers such that $a_i<a_{i+1} $ for $i \in \mathbb {N}$ and $\liminf _{n\rightarrow \infty } (a_{n+1}/a_{n})>1$, then there exists a set $B\subset \mathbb {N}$ such that $B\cap A = \varnothing $ and B is a sparse additive complement of the set A.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Chen, Y.-G. and Fang, J.-H., ‘Additive complements of the squares’, J. Number Theory 180 (2017), 410422.10.1016/j.jnt.2017.04.016CrossRefGoogle Scholar
Dai, L.-X. and Pan, H., ‘The additive complements of primes and Goldbach’s problem’, Acta Arith. 162(3) (2014), 209221.10.4064/aa162-3-1CrossRefGoogle Scholar
Ding, Y., ‘Green’s problem on additive complements of the squares’, C. R. Math. Acad. Sci. Paris 358(8) (2020), 897900.10.5802/crmath.107CrossRefGoogle Scholar
Erdős, P., ‘Some results on additive number theory’, Proc. Amer. Math. Soc. 5(6) (1954), 847853.10.1090/S0002-9939-1954-0064798-9CrossRefGoogle Scholar
Faisant, A., Grekos, G., Panday, R. K. and Somu, S. T., ‘Additive complements for a given asymptotic density’, Mediterr. J. Math. 18(1) (2021), 113.10.1007/s00009-020-01679-0CrossRefGoogle Scholar
Fang, J.-H. and Sándor, C., ‘Additive completion of thin sets’, Bull. Aust. Math. Soc. 109(3) (2024), 429436.10.1017/S0004972723001016CrossRefGoogle Scholar
Grekos, G., Pandey, R. K. and Somu, S. T., ‘Sumsets with prescribed lower and upper asymptotic densities’, Mediterr. J. Math. 19(5) (2022), 19.10.1007/s00009-022-02139-7CrossRefGoogle Scholar
Kolountzakis, M. N., ‘On the additive complements of the primes and sets of similar growth’, Acta Arith. 77(1) (1996), 18.10.4064/aa-77-1-1-8CrossRefGoogle Scholar
Leonetti, P. and Tringali, S., ‘On the density of sumsets’, Monatsh. Math. 198(3) (2022), 565580.10.1007/s00605-022-01694-1CrossRefGoogle Scholar
Leonetti, P. and Tringali, S., ‘On the density of sumsets II’, Bull. Aust. Math. Soc. 109(3) (2024), 414419.10.1017/S000497272300062XCrossRefGoogle Scholar
Lorentz, G. G., ‘On a problem of additive number theory’, Proc. Amer. Math. Soc. 5(5) (1954), 838841.10.1090/S0002-9939-1954-0063389-3CrossRefGoogle Scholar
Mohan, , Patil, B. R. and Pandey, R. K., ‘On additive complement with special structures’, Mediterr. J. Math. 22 (2025), Article no. 57.10.1007/s00009-025-02825-2CrossRefGoogle Scholar
Ruzsa, I., ‘Additive completion of lacunary sequences’, Combinatorica 21 (2001), 279291.10.1007/s004930100025CrossRefGoogle Scholar
Ruzsa, I., ‘Exact additive complements’, Q. J. Math. 68(1) (2017), 227235.Google Scholar