Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-15T19:16:51.119Z Has data issue: false hasContentIssue false

On Lagrange interpolation with equally spaced nodes

Published online by Cambridge University Press:  17 April 2009

Michael Revers
Affiliation:
Department of Mathematics, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Slazburg, Austria e-mail: Michael.Revers@sbg.ac.at
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A well-known result due to S.N. Bernstein is that sequence of Lagrange interpolation polynomials for |x| at equally spaced nodes in [−1, 1] diverges everywhere, except at zero and the end-points. In this paper we present a quantitative version concerning the divergence behaviour of the Lagrange interpolants for |x|3 at equidistant nodes. Furthermore, we present the exact rate of convergence for the interpolatory parabolas at the point zero.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2000

References

[1]Bernstein, S., ‘Quelques remarques sur l'interpolation’, Math. Ann. 79 (1918), 112.CrossRefGoogle Scholar
[2]Brutman, L. and Passow, E., ‘On the Divergence of Lagrange interpolation to |x|’, J. Approx. Theory 81 (1995), 127135.CrossRefGoogle Scholar
[3]Byrne, G., Mills, T.M. and Smith, S.J., ‘On Lagrange interpolation with equidistant nodes’, Bull. Austral. Math. Soc. 42 (1990), 8189.CrossRefGoogle Scholar
[4]Kuipers, L. and Niederreiter, H., Uniform distribution of sequences (John Wiley, New York, 1974).Google Scholar
[5]Li, X. and Mohapatra, R.N., ‘On the divergence of Lagrange interpolation with equidistant nodes’, Proc. Amer. Math. Soc. 118 (1993), 12051212.Google Scholar
[6]Luke, Y.L., The special functions and their approximations, Vol. I (Academic Press, New York, 1969).Google Scholar
[7]Mills, T.M. and Smith, S.J., ‘On the divergence of Hermite-Fejér type interpolation with equidistant nodes’, Bull. Austral. Math. Soc. 49 (1994), 101110.CrossRefGoogle Scholar
[8]Natanson, I.P., Constructive function theory, Vol. III (Frederick Ungar, New York, 1965).Google Scholar
[9]Revers, M., ‘On the approximation of certain functions by interpolating polynomials’, Bull. Austral. Math. Soc. 58 (1998), 505512.CrossRefGoogle Scholar
[10]Revers, M., ‘The divergence of Lagrange interpolation for |x|α at equidistant nodes’, J. Approx. Theory 103 (2000), 269280.CrossRefGoogle Scholar
[11]Revers, M., ‘On Lagrange interpolatory parabolas to |x|α at equally spaced nodes’, Arch. Math 74 (2000), 385391.CrossRefGoogle Scholar
[12]Runck, P.O., ‘Uuml;ber Konvergenzfragen bei Polynominterpolation mit äquidistanten Knoten I’, J. Reine Angew. Math. 208 (1961), 5169.CrossRefGoogle Scholar
[13]Sendov, Bl. and Andreev, A., ‘Approximation and interpolation theory’, in Handbook of numerical analysis, Vol. III, (Ciarlet, P.G. and Lions, J.L., Editors) (North Holland, Amsterdam, 1994).Google Scholar
[14]Varga, R.S. and Carpenter, A.J., ‘On the Bernstein Conjecture in approximation theory’, Constr. Approx. 1 (1985), 333348.CrossRefGoogle Scholar