Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-07T08:58:48.067Z Has data issue: false hasContentIssue false

ON MONOTONE INCREASING REPRESENTATION FUNCTIONS

Published online by Cambridge University Press:  17 July 2023

SÁNDOR Z. KISS*
Affiliation:
Department of Algebra and Geometry, Institute of Mathematics, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
CSABA SÁNDOR
Affiliation:
Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary; Department of Computer Science and Information Theory, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary; MTA-BME Lendület Arithmetic Combinatorics Research Group, ELKH, Műegyetem rkp. 3., H-1111 Budapest, Hungary e-mail: csandor@math.bme.hu
QUAN-HUI YANG
Affiliation:
School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, PR China e-mail: yangquanhui01@163.com

Abstract

Let $k\ge 2$ be an integer and let A be a set of nonnegative integers. The representation function $R_{A,k}(n)$ for the set A is the number of representations of a nonnegative integer n as the sum of k terms from A. Let $A(n)$ denote the counting function of A. Bell and Shallit [‘Counterexamples to a conjecture of Dombi in additive number theory’, Acta Math. Hung., to appear] recently gave a counterexample for a conjecture of Dombi and proved that if $A(n)=o(n^{{(k-2)}/{k}-\epsilon })$ for some $\epsilon>0$, then $R_{\mathbb {N}\setminus A,k}(n)$ is eventually strictly increasing. We improve this result to $A(n)=O(n^{{(k-2)}/{(k-1)}})$. We also give an example to show that this bound is best possible.

MSC classification

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The first author was supported by the NKFIH Grant No. K129335; the second author was supported by the NKFIH Grant No. K129335.

References

Balasubramanian, B., ‘A note on a result of Erdős, Sárközy and Sós’, Acta Arith. 49 (1987), 4553.CrossRefGoogle Scholar
Bell, J. P. and Shallit, J., ‘Counterexamples to a conjecture of Dombi in additive number theory’, Acta Math. Hungar. 169 (2023), 562565.CrossRefGoogle Scholar
Dombi, G., ‘Additive properties of certain sets’, Acta Arith. 49 (1987), 4553.Google Scholar
Erdős, P., Sárközy, A. and Sós, V. T., ‘Problems and results on additive properties of general sequences IV’, in: Number Theory: Proceedings, Ootacamund, India, 1984, Lecture Notes in Mathematics, 1122 (ed. Alladi, K.) (Springer-Verlag, Berlin–Heidelberg, 1985), 85104.CrossRefGoogle Scholar
Erdős, P., Sárközy, A. and Sós, V. T., ‘Problems and results on additive properties of general sequences V’, Monatsh. Math. 102 (1986), 183197.CrossRefGoogle Scholar
Kiss, S. Z., ‘On the monotonicity of an additive representation function’, Publ. Math. Debrecen 73 (2008), 489495.CrossRefGoogle Scholar
Shallit, J., ‘A Dombi counterexample with positive lower density’, Preprint, 2023, arXiv:2302.02138.Google Scholar
Tang, M., ‘Some extensions of additive properties of general sequences’, Bull. Aust. Math. Soc. 73 (2006), 139146.CrossRefGoogle Scholar