Hostname: page-component-5b777bbd6c-rbv74 Total loading time: 0 Render date: 2025-06-19T20:03:46.039Z Has data issue: false hasContentIssue false

Infinite dimensional sequential compactness: Sequential compactness based on barriers

Published online by Cambridge University Press:  09 December 2024

C. Corral*
Affiliation:
York University, Toronto, Canada
O. Guzmán
Affiliation:
Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Morelia, México e-mail: oguzman@matmor.unam.mx
C. López-Callejas
Affiliation:
Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Morelia, México e-mail: carloscallejas@matmor.unam.mx
P. Memarpanahi
Affiliation:
York University, Toronto, Canada e-mail: pourya7@yorku.ca
P. Szeptycki
Affiliation:
Department of Mathematics and Statistics, York University, Toronto, Canada e-mail: szeptyck@yorku.ca
S. Todorčević
Affiliation:
Department of Mathematics, University of Toronto, Toronto, Canada e-mail: stevo@math.toronto.edu Institut de Mathématiques de Jussieu, CNRS, Paris, France e-mail: stevo.todorcevic@imj-prg.fr Matematički Institut, SANU, Belgrade, Serbia e-mail: stevo.todorcevic@sanu.ac.rs

Abstract

We introduce a generalization of sequential compactness using barriers on $\omega $ extending naturally the notion introduced in [W. Kubiś and P. Szeptycki, On a topological Ramsey theorem, Canad. Math. Bull., 66 (2023), 156–165]. We improve results from [C. Corral and O. Guzmán and C. López-Callejas, High dimensional sequential compactness, Fund. Math.] by building spaces that are ${\mathcal {B}}$-sequentially compact but not ${\mathcal {C}}$-sequentially compact when the barriers ${\mathcal {B}}$ and ${\mathcal {C}}$ satisfy certain rank assumption which turns out to be equivalent to a Katětov-order assumption. Such examples are constructed under the assumption ${\mathfrak {b}} ={\mathfrak {c}}$. We also exhibit some classes of spaces that are ${\mathcal {B}}$-sequentially compact for every barrier ${\mathcal {B}}$, including some classical classes of compact spaces from functional analysis, and as a byproduct, we obtain some results on angelic spaces. Finally, we introduce and compute some cardinal invariants naturally associated to barriers.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The first author acknowledges support from York University and the Fields Institute. The research of the second author was supported by PAPIIT grant IA 104124 and CONAHCYT grant CBF2023-2024-903. The research of the third author was supported by PAPIIT grant IN101323 and CONACyT grant A1-S-16164. The fifth author acknowledges support from NSERC. The research of the sixth author was partially supported by grants from NSERC(455916), CNRS(UMR7586), SFRS(7750027-SMART), and EXPRO 20-31529X (Czech Science Foundation)

References

Spiros, S. A. and Todorčević, S., Ramsey methods in analysis, Advanced Courses in Mathematics, CRM Barcelona, Birkhäuser Verlag, Basel, 2005, viii–257. https://doi.org/10.1007/3-7643-7360-1 Google Scholar
Blass, A., Combinatorial cardinal characteristics of the continuum . In Handbook of set theory. Vols. 1, 2, 3, 2010, 395–489. https://doi.org/10.1007/978-1-4020-5764-9_7 CrossRefGoogle Scholar
Bojańczyk, M., Kopczyński, E. and Toruńczyk, S., Ramsey’s theorem for colors from a metric space . Semigroup Forum 85(2012), 182184. https://doi.org/10.1007/s00233-012-9404-4 CrossRefGoogle Scholar
Booth, D., Ultrafilters on a countable set . Ann. Math. Logic 2(1970/71), 1–24. https://doi.org/10.1016/0003-4843(70)90005-7 CrossRefGoogle Scholar
Bourgain, J., Fremlin, D. H. and Talagrand, M., Pointwise compact sets of Baire-measurable functions . Amer. J. Math. 100(1978), 845886. https://doi.org/10.2307/2373913 CrossRefGoogle Scholar
Cieśla, T., A filter on a collection of finite sets and Eberlein compacta , Topology Appl. 229(2017), 106111. https://doi.org/10.1016/j.topol.2017.07.011 CrossRefGoogle Scholar
Corral, C., Guzmán, O. and López-Callejas, C., High dimensional sequential compactness . Fund. Math. 264(2024), 2154. https://doi.org/10.4064/fm230606-11-8 CrossRefGoogle Scholar
Corral, C. and Hrušák, M., Fréchet-like properties and almost disjoint families . Topology Appl. 277(2020). https://doi.org/10.1016/j.topol.2020.107216 CrossRefGoogle Scholar
Debs, G., Effective properties in compact sets of Borel functions . Mathematika 34(1987), 6468. https://doi.org/10.1112/s0025579300013280 CrossRefGoogle Scholar
Dobrinen, N., Continuous and other finitely generated canonical cofinal maps on ultrafilters . Fund. Math. 249(2020), 111147. https://doi.org/10.4064/fm691-6-2019 CrossRefGoogle Scholar
van Douwen, E. K., The integers and topology . In Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, 111167. https://doi.org/10.1016/b978-0-444-86580-9.50006-9 CrossRefGoogle Scholar
Engelking, R., General topology, Monografie Matematyczne, 1977.Google Scholar
Filipów, R., Kowitz, K. and Kwela, A., A unified approach to Hindman, Ramsey and van der Waerden spaces . J. Symb. Log. (2024). https://doi.org/10.1017/jsl.2024.8 CrossRefGoogle Scholar
Hernández-Hernández, F. and Hrušák, M., Topology of Mrówka-Isbell spaces . In Pseudocompact topological spaces, 2018, 253289. https://doi.org/10.1007/978-3-319-91680-4_8 CrossRefGoogle Scholar
Knaust, H., Array convergence of functions of the first Baire class . Proc. Amer. Math. Soc. 112(1991), 529532. https://doi.org/10.1090/s0002-9939-1991-1057955-9 CrossRefGoogle Scholar
Knaust, H., Angelic spaces with the Ramsey property . In Interaction between functional analysis, harmonic analysis, and probability, 1994, 267273.Google Scholar
Hrušák, M., Katětov order on Borel ideals . Arch. Math. Logic. 56(2017), 831847. https://doi.org/10.1007/s00153-017-0543-x CrossRefGoogle Scholar
Katětov, M., Products of filters , Comment. Math. Univ. Carolinae 9(1968), 173189.Google Scholar
Kubiś, W. and Szeptycki, P., On a topological Ramsey theorem , Canad. Math. Bull. 66(2023), 156165. https://doi.org/10.4153/s0008439522000170 CrossRefGoogle Scholar
Kunen, K., Set theory-An introduction to independence proofs, North-Holland Publishing Co., Amsterdam-New York, 1980. https://doi.org/10.1016/s0049-237x(08)x7037-5 Google Scholar
Michael, E. A., A quintuple quotient quest , General Topology and Appl. 2(1972), 91138. https://doi.org/10.1016/0016-660x(72)90040-2 CrossRefGoogle Scholar
Nash-Williams, C. St. J. A., On well-quasi-ordering transfinite sequences . Proc. Cambridge Philos. Soc. 61(1965), 3339. https://doi.org/10.1017/s0305004100038603 CrossRefGoogle Scholar
Negrepontis, S., Banach spaces and topology. In Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, 10451142. https://doi.org/10.1016/B978-0-444-86580-9.50026-4 CrossRefGoogle Scholar
Pol, R., Note on pointwise convergence of sequences of analytic sets . Mathematika 36(1989), no. 2, 290300. https://doi.org/10.1112/s0025579300013140 CrossRefGoogle Scholar
Todorčević, S., Compact subsets of the first Baire class . J. Amer. Math. Soc. 12(1999), 11791212. https://doi.org/10.1090/s0894-0347-99-00312-4 CrossRefGoogle Scholar
Todorčević, S., Introduction to Ramsey spaces . Ann. of Math. Stud. 174(2010), viii–287. https://doi.org/10.1515/9781400835409Google Scholar