Skip to main content
×
×
Home

Boundary Quotient $\text{C}^{\ast }$ -algebras of Products of Odometers

  • Hui Li (a1) and Dilian Yang (a2)
Abstract

In this paper, we study the boundary quotient $\text{C}^{\ast }$ -algebras associated with products of odometers. One of our main results shows that the boundary quotient $\text{C}^{\ast }$ -algebra of the standard product of $k$ odometers over $n_{i}$ -letter alphabets $(1\leqslant i\leqslant k)$ is always nuclear, and that it is a UCT Kirchberg algebra if and only if $\{\ln n_{i}:1\leqslant i\leqslant k\}$ is rationally independent, if and only if the associated single-vertex $k$ -graph $\text{C}^{\ast }$ -algebra is simple. To achieve this, one of our main steps is to construct a topological $k$ -graph such that its associated Cuntz–Pimsner $\text{C}^{\ast }$ -algebra is isomorphic to the boundary quotient $\text{C}^{\ast }$ -algebra. Some relations between the boundary quotient $\text{C}^{\ast }$ -algebra and the $\text{C}^{\ast }$ -algebra $\text{Q}_{\mathbb{N}}$ introduced by Cuntz are also investigated.

Copyright
Footnotes
Hide All

Author H. L. was partially supported by Research Center for Operator Algebras of East China Normal University and was partially supported by Science and Technology Commission of Shanghai Municipality (STCSM), grant No. 13dz2260400. Author D. Y. was partially supported by an NSERC Discovery Grant 808235.

Footnotes
References
Hide All
[ABLS16] Afsar, Z., Brownlowe, N., Larsen, N. S., and Stammeier, N., Equilibrium states on right LCM semigroup C-algebras. arxiv:1611.01052.
[BOS15] Barlak, S., Omland, T., and Stammeier, N., On the K-theory of C-algebras arising from integral dynamics . Ergodic Theory Dynam. Systems, to appear. arxiv:1512.04496.
[Bri05] Brin, M. G., On the Zappa–Szép product . Comm. Algebra 33(2005), 393424. https://doi.org/10.1081/AGB-200047404.
[BCFS14] Brown, J., Clark, L.O., Farthing, C., and Sims, A., Simplicity of algebras associated to étale groupoids . Semigroup Forum 88(2014), 433452. https://doi.org/10.1007/s00233-013-9546-z.
[BNR14] Brown, J. H., Nagy, G., and Reznikoff, S., A generalized Cuntz-Krieger uniqueness theorem for higher-rank graphs . J. Funct. Anal. 266(2014), 25902609. https://doi.org/10.1016/j.jfa.2013.08.020.
[BLS16] Brownlowe, N., Larsen, N. S., and Stammeier, N., On C-algebras associated to right LCM semigroups . Trans. Amer. Math. Soc. 369(2017), 3168. https://doi.org/10.1090/tran/6638.
[BRRW14] Brownlowe, N., Ramagge, J., Robertson, D., and Whittaker, M. F., Zappa–Szép products of semigroups and their C-algebras . J. Funct. Anal. 266(2014), 39373967. https://doi.org/10.1016/j.jfa.2013.12.025.
[CLSV11] Carlsen, T. M., Larsen, N. S., Sims, A., and Vittadello, S. T., Co-universal algebras associated to product systems, and gauge-invariant uniqueness theorems . Proc. Lond. Math. Soc. (3) 103(2011), 563600. https://doi.org/10.1112/plms/pdq028.
[Cun08] Cuntz, J., C-algebras associated with the ax + b-semigroup over ℕ . In: K-theory and noncommutative geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 201215. https://doi.org/10.4171/060-1/8.
[DSY08] Davidson, K. R., Power, S. C., and Yang, D., Atomic representations of rank 2 graph algebras . J. Funct. Anal. 255(2008), 819853. https://doi.org/10.1016/j.jfa.2008.05.008.
[DSY10] Davidson, K. R., Power, S. C., and Yang, D., Dilation theory for rank 2 graph algebras . J. Operator Theory 63(2010), 245270.
[DY091] Davidson, K. R. and Yang, D., Periodicity in rank 2 graph algebras . Canad. J. Math. 61(2009), 12391261. https://doi.org/10.4153/CJM-2009-058-0.
[DY092] Davidson, K. R. and Yang, D., Representations of higher rank graph algebras . New York J. Math. 15(2009), 169198.
[Fow02] Fowler, N. J., Discrete product systems of Hilbert bimodules . Pacific J. Math. 204(2002), 335375. https://doi.org/10.2140/pjm.2002.204.335.
[FMR03] Fowler, N. J., Muhly, P. S., and Raeburn, I., Representations of Cuntz-Pimsner algebras . Indiana Univ. Math. J. 52(2003), 569605. https://doi.org/10.1512/iumj.2003.52.2125.
[FS02] Fowler, N. J. and Sims, A., Product systems over right-angled Artin semigroups . Trans. Amer. Math. Soc. 354(2002), 14871509. https://doi.org/10.1090/S0002-9947-01-02911-7.
[KOQ14] Kaliszewski, S., Omland, T., and Quigg, J., Cuntz-Li algebras from a-adic numbers . Rev. Roumaine Math. Pures Appl. 59(2014), 331370.
[Kat041] Katsura, T., A class of C-algebras generalizing both graph algebras and homeomorphism C-algebras I. Fundamental results . Trans. Amer. Math. Soc. 356(2004), 42874322. https://doi.org/10.1090/S0002-9947-04-03636-0.
[Kat042] Katsura, T., On C-algebras associated with C-correspondences . J. Funct. Anal. 217(2004), 366401. https://doi.org/10.1016/j.jfa.2004.03.010.
[Kat08] Katsura, T., A class of C-algebras generalizing both graph algebras and homeomorphism C-algebras. IV. Pure infiniteness . J. Funct. Anal. 254(2008), 11611187. https://doi.org/10.1016/j.jfa.2007.11.014.
[KP00] Kumjian, A. and Pask, D., Higher rank graph C-algebras . New York J. Math. 6(2000), 120.
[LRRW14] Laca, M., Raeburn, I., Ramagge, J., and Whittaker, M. F., Equilibrium states on the Cuntz–Pimsner algebras of self-similar actions . J. Funct. Anal. 266(2014), 66196661. https://doi.org/10.1016/j.jfa.2014.03.003.
[LL12] Larsen, N. S. and Li, X., The 2-adic ring C-algebra of the integers and its representations . J. Funct. Anal. 262(2012), 13921426. https://doi.org/10.1016/j.jfa.2011.11.008.
[Li12] Li, X., Semigroup C-algebras and amenability of semigroups . J. Funct. Anal. 262(2012), 43024340. https://doi.org/10.1016/j.jfa.2012.02.020.
[Li13] Li, X., Nuclearity of semigroup C-algebras and the connection to amenability . Adv. Math. 244(2013), 626662. https://doi.org/10.1016/j.aim.2013.05.016.
[Nek05] Nekrashevych, V., Self-similar groups . Mathematical Surveys and Monographs, 117, American Mathematical Society, Providence, RI, 2005. https://doi.org/10.1090/surv/117.
[Phi00] Phillips, N. C., A Classification theorem for nuclear purely infinite simple C-algebras . Doc. Math. 5(2000), 49114.
[Pim97] Pimsner, M. V., A class of C-algebras generalizing both Cuntz-Krieger algebras and crossed products by Z . In: Free probability theory (Waterloo, ON, 1995), Fields Inst. Commun., 12, American Mathematical Society, Providence, RI, 1997, pp. 189212.
[RSY04] Raeburn, I., Sims, A., and Yeend, T., The C-algebras of finitely aligned higher-rank graphs . J. Funct. Anal. 213(2004), 206240. https://doi.org/10.1016/j.jfa.2003.10.014.
[Ren80] Renault, J., A groupoid approach to C-algebras . Lecture Notes in Mathematics, 793, Springer, Berlin, 1980.
[RSWY09] Renault, J. N., Sims, A., Williams, D. P., and Yeend, T., Uniqueness theorems for topological higher-rank graph C-algebras . Proc. Amer. Math. Soc., to appear. arxiv:0906.0829v3.
[RS87] Rosenberg, J. and Schochet, C., The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized K-functor . Duke Math. J. 55(1987), 431474. https://doi.org/10.1215/S0012-7094-87-05524-4.
[SY10] Sims, A. and Yeend, T., C-algebras associated to product systems of Hilbert bimodules . J. Operator Theory 64(2010), 349376.
[Stam15] Stammeier, N., On C-algebras of irreversible algebraic dynamical systems . J. Funct. Anal. 269(2015), 11361179. https://doi.org/10.1016/j.jfa.2015.02.005.
[Stam16] Stammeier, N., A boundary quotient diagram for right LCM semigroups . Semigroup Forum, to appear. arxiv:1604.03172.
[Star15] Starling, C., Boundary quotients of C-algebras of right LCM semigroups . J. Funct. Anal. 268(2015), 33263356. https://doi.org/10.1016/j.jfa.2015.01.001.
[Tu99] Tu, J.-L., La conjecture de Baum-Connes pour les feuilletages moyennables . K-Theory 17(1999), 215264. https://doi.org/10.1023/A:1007744304422.
[Yam09] Yamashita, S., Cuntz’s ax + b-semigroup C-algebra over ℕ and product system C-algebras . J. Ramanujan Math. Soc. 24(2009), 299322.
[Yan10] Yang, D., Endomorphisms and modular theory of 2-graph C-algebras . Indiana Univ. Math. J. 59(2010), 495520. https://doi.org/10.1512/iumj.2010.59.3973.
[Yan15] Yang, D., Periodic k-graph algebras revisited . J. Aust. Math. Soc. 99(2015), 267286. https://doi.org/10.1017/S1446788715000087.
[Yan161] Yang, D., The interplay between k-graphs and the Yang-Baxter equation . J. Algebra 451(2016), 494525. https://doi.org/10.1016/j.jalgebra.2016.01.001.
[Yan162] Yang, D., Affine actions and the Yang–Baxter equation. arxiv:1607.03393.
[Yee07] Yeend, T., Groupoid models for the C-algebras of topological higher-rank graphs . J. Operator Theory 57(2007), 95120.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed