Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-swqlm Total loading time: 0.243 Render date: 2021-11-30T12:37:54.928Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Boundedness of Calderón–Zygmund Operators on Non-homogeneous Metric Measure Spaces

Published online by Cambridge University Press:  20 November 2018

Tuomas Hytönen
Affiliation:
Department of Mathematics and Statistics, University of Helsinki, Gustaf H¨allstr¨omin Katu 2B, Fi-00014 Helsinki, Finland email: tuomas.hytonen@helsinki.fi
Suile Liu
Affiliation:
School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex systems, Ministry of Education, Beijing 100875, People’s Republic of China email: slliu@mail.bnu.edu.cn dcyang@bnu.edu.cn
Dachun Yang
Affiliation:
School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex systems, Ministry of Education, Beijing 100875, People’s Republic of China email: slliu@mail.bnu.edu.cn dcyang@bnu.edu.cn
Dongyong Yang
Affiliation:
School of Mathematical Sciences, Xiamen University, Xiamen 361005, People’s Republic of China email: dyyang@xmu.edu.cn
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $\left( \text{ }\!\!\chi\!\!\text{ ,}\,d,\,\mu \right)$ be a separable metric measure space satisfying the known upper doubling condition, the geometrical doubling condition, and the non-atomic condition that $\mu \left( \left\{ x \right\} \right)\,=\,0$ for all $x\,\in \,\text{ }\!\!\chi\!\!\text{ }$ . In this paper, we show that the boundedness of a Calderón–Zygmund operator $T$ on ${{L}^{2}}\left( \mu \right)$ is equivalent to that of $T$ on ${{L}^{p}}\left( \mu \right)$ for some $p\,\in \,\left( 1,\,\infty \right)$ , and that of $T$ from ${{L}^{1}}\left( \mu \right)$ to ${{L}^{1,\,\infty }}\left( \mu \right)$ . As an application, we prove that if $T$ is a Calderón–Zygmund operator bounded on ${{L}^{2}}\left( \mu \right)$ , then its maximal operator is bounded on ${{L}^{p}}\left( \mu \right)$ for all $p\,\in \,\left( 1,\,\infty \right)$ and from the space of all complex-valued Borel measures on $\text{ }\!\!\chi\!\!\text{ }$ to ${{L}^{1,\,\infty }}\left( \mu \right)$ . All these results generalize the corresponding results of Nazarov et al. on metric spaces with measures satisfying the so-called polynomial growth condition.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2012

References

[1] Anh, B. T. and Duong, X. T., Hardy spaces, regularized BMO spaces and the boundedness of Calderon–Zygmund operators on non-homogeneous spaces. J. Geom. Anal., to appear.Google Scholar
[2] Bramanti, M., Singular integrals in nonhomogeneous spaces: L2 and Lp continuity from Hölder estimates. Rev. Mat. Iberoam. 26(2010), no. 1, 347366.Google Scholar
[3] Coifman, R. R. and Weiss, G., Analyse harmonique non-commutative sur certains espaces homogènes. Lecture Notes in Math., 242, Springer-Verlag, Berlin-New York, 1971.CrossRefGoogle Scholar
[4] Coifman, R. R. and Weiss, G., Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc. 83(1977), no. 4, 569645. http://dx.doi.org/10.1090/S0002-9904-1977-14325-5 Google Scholar
[5] Duoandikoetxea, J., Fourier analysis. Graduate Studies in Mathematics, 29, American Mathematical Society, Providence, RI, 2001.Google Scholar
[6] Grafakos, L., Classical Fourier analysis. Second ed., Graduate Texts in Mahematics, 249, Springer, New York, 2008.Google Scholar
[7] Grafakos, L., Modern Fourier analysis. Second ed., Graduate Texts in Mathematics, 250, Springer, New York, 2009.CrossRefGoogle Scholar
[8] Heinonen, J., Lectures on analysis on metric spaces. Universitext, Springer-Verlag, New York, 2001.CrossRefGoogle Scholar
[9] Hytönen, T., A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa. Publ. Mat. 54(2010), no. 2, 485504.Google Scholar
[10] Hytönen, T. and Martikainen, H., Non-homogeneous Tb theorem and random dyadic cubes on metric measure spaces. J. Geom. Anal., published online April 23, 2011. http://dx.doi.org/10.1007/s12220-011-9230-z CrossRefGoogle Scholar
[11] Hytönen, T., Yang, Da., and Yang, Da., The Hardy space H 1 on non-homogeneous metric spaces. Math. Proc. Cambridge Philos. Soc., to appear.Google Scholar
[12] Mauceri, G. and Meda, S., BMO and H1 for the Ornstein-Uhlenbeck operator. J. Funct. Anal. 252(2007), no. 1, 278–313. http://dx.doi.org/10.1016/j.jfa.2007.06.017Google Scholar
[13] Nazarov, F., Treil, S., and Volberg, A., Weak type estimates and Cotlar inequalities for Calder´on-Zygmund operators on nonhomogeneous spaces.Internat. Math. Res. Notices 1998, no. 9, 463–487.Google Scholar
[14] Nazarov, F., Treil, S., and Volberg, A., The Tb-theorem on non-homogeneous spaces. Acta Math. 190(2003), no. 2, 151–239. http://dx.doi.org/10.1007/BF02392690Google Scholar
[15] Rudin, W. , Real and complex analysis. Third ed., McGram-Hill Book Co. New York, 1987.Google Scholar
[16] Tolsa, X. , BMO, H1, and Calderón–Zygmund operators for non doubling measures. Math. Ann. 319(2001), no. 1, 89–149. http://dx.doi.org/10.1007/PL00004432 Google Scholar
[17] Tolsa, X., Littlewood-Paley theory and the T (1) theorem with non-doubling measures. Adv. Math. 164(2001), no. 1, 57–116. http://dx.doi.org/10.1006/aima.2001.2011 Google Scholar
[18] Tolsa, X., Painlevé's problem and the semiadditivity of analytic capacity. Acta Math. 190(2003), no. 1, 105–149. http://dx.doi.org/10.1007/BF02393237 Google Scholar
[19] Volberg, A. and Wick, B. D., Bergman-type singular operators and the characterization of Carleson measures for Besov-Sobolev spaces on the complex ball. Amer. J. Math., to appear.Google Scholar
You have Access
29
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Boundedness of Calderón–Zygmund Operators on Non-homogeneous Metric Measure Spaces
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Boundedness of Calderón–Zygmund Operators on Non-homogeneous Metric Measure Spaces
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Boundedness of Calderón–Zygmund Operators on Non-homogeneous Metric Measure Spaces
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *