Skip to main content Accessibility help
×
×
Home

Comparison of K-Theory Galois Module Structure Invariants

  • T. Chinburg (a1), M. Kolster (a2) and V. P. Snaith (a3)
Abstract

We prove that two, apparently different, class-group valued Galoismodule structure invariants associated to the algebraic K-groups of rings of algebraic integers coincide. This comparison result is particularly important in making explicit calculations.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Comparison of K-Theory Galois Module Structure Invariants
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Comparison of K-Theory Galois Module Structure Invariants
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Comparison of K-Theory Galois Module Structure Invariants
      Available formats
      ×
Copyright
References
Hide All
[1] Burns, D. and Flach, M., Motivic L-functions and Galois module structure invariants. Math. Ann. 305 (1996), 65102.
[2] Burns, D. and Flach, M., On Galois structure invariants associated to Tate motives. Amer. J. Math. 120 (1998), 13431397.
[3] Bloch, S. and Kato, K., L-functions and Tamagawa numbers of motives. Grothendieck Festschrift, Progress in Math. (86) 1 , Birkh¨auser, Boston, 1990, 333400.
[4] Chinburg, T., Exact sequences and Galois module structure. Ann. of Math. 121 (1985), 351376.
[5] Chinburg, T., Kolster, M., Pappas, G. and Snaith, V. P., Galois structure of K-groups of rings of integers. R, C.. Acad. Sci. Paris Séries I Math. 320 (1995), 14351440.
[6] Chinburg, T., Kolster, M., Pappas, G. and Snaith, V. P., Galois structure of K-groups of rings of integers. K -Theory (4) 14 (1998), 319369.
[7] Chinburg, T., Kolster, M., Pappas, G. and Snaith, V. P., Quaternionic Exercises in K-theory Galois Module Structure. Proc. Great Lakes K -theory Conf., 1996. Fields Insitute Communications 16 , Amer. Math. Soc. Publ. 1997, 129.
[8] Chinburg, T., Kolster, M., Pappas, G. and Snaith, V. P., Quaternionic Exercises in K-theory Galois Module Structure II. Proc. Algebraic K-theory Conf. I. C. T. P. Trieste, World Scientific Press, 1999, 337369.
[9] Grayson, D. R., On the K-theory of fields. Proc. Conf. algebraic K -theory and algebraic number theory, Honolulu, 1987, Amer. Math. Soc. Contemp. Math. 83 (1989), 3155.
[10] Hilton, P. J. and Stammbach, U., A Course in Homological Algebra. Graduate Texts in Math. 4 , Springer- Verlag, 1971.
[11] Kahn, B., Descente Galoisienne et K2 des corps de nombres. K-Theory (1) 7 (1993), 55100.
[12] Kato, K., Iwasawa theory and p-adic Hodge theory. Kodai Math. J. (1) 16 (1993), 131.
[13] Lang, S., Algebraic Number Theory. Addison-Wesley 2nd. ed., 1984.
[14] Levine, M., The indecomposable K3 of a field. Ann. Sci. ´ Ecole Norm. Sup. 22 (1989), 255344.
[15] Merkurjev, A. S., K2 of fields and the Brauer group. Applications of algebraic K -theory to geometry and number theory, Part II, Contemp. Math. 55 (1986), 529546.
[16] S Milne, J., É tale cohomology. Princeton Mathematical Series 33 , Princeton Univ. Press, 1980.
[17] Merkurjev, A. S. and Suslin, A. A., K-cohomology of Severi-Brauer varieties and the norm residue homomorphism. Izv. Akad. Nauk. SSSR 46 (1982), 1011–1046. English trans. Math. USSR 21 (1983), 307340.
[18] Merkurjev, A. S. and Suslin, A. A., The K3 group of a field. Izv. Akad. Nauk. SSSR Ser. Mat. 54 (1990), 339–356. English trans. Math. USSR 36 (1990), 541565.
[19] Snaith, V. P., Galois Module Structure. Fields Institute Monographs 2 , Amer. Math. Soc., 1995.
[20] Snaith, V. P., Explicit Brauer Induction (with applications to algebra and number theory). Cambridge Studies in Advanced Math. 42 , Cambridge University Press, 1994.
[21] Snaith, V. P., Topological Methods in Galois Representation Theory. Canadian Math. Soc. Monographs, Wiley, 1989.
[22] Snaith, V. P., Local fundamental classes derived fromhigher-dimensional K-groups I,II. Proc. Great Lakes K -theory Conf., 1996, Fields Insitute Communications 16 , Amer. Math. Soc. Publ., 1997, 285–323.and 325344.
[23] Snaith, V. P., Hecke algebras and class-group Invariants. Canad. J. Math. (6) 49 (1997), 12651280.
[24] Soulé, C., K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale. Invent. Math. 55 (1979), 251295.
[25] Soulé, C., Groupes de Chow et K-théorie de variétés sur un corps fini. Math. Ann. 268 (1984), 317345.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed