No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Representations of harmonic functions by means of integrals taken over the harmonic boundary ΔR of a Riemann surface R enable one to study the classification theory of Riemann surfaces in terms of topological properties of ΔR (cf. [6; 4; 1; 7]). In deducing such integral representations, essential use is made of the fact that the functions in question attain their maxima and minima on ΔR .
The corresponding maximum principle in higher dimensions was discussed for bounded harmonic functions in [3]. In the present paper we consider Dirichlet-finite harmonic functions. We shall show that every such function on a subregion G of a Riemannian N-space R attains its maximum and minimum on the set , where ∂G is the relative boundary of G in R and the closures are taken in Royden's compactification R *. As an application we obtain the harmonic decomposition theorem relative to a compact subset K of R* with a smooth ∂(K ∩ R).