Skip to main content

Non-tangential Maximal Function Characterizations of Hardy Spaces Associated with Degenerate Elliptic Operators

  • Junqiang Zhang (a1), Jun Cao (a2), Renjin Jiang (a1) and Dachun Yang (a1)

Let w be either in the Muckenhoupt class of A 2(ℝ n ) weights or in the class of QC(ℝ n ) weights, and let be the degenerate elliptic operator on the Euclidean space ℝ n , n ≥ 2. In this article, the authors establish the non-tangential maximal function characterization of the Hardy space associated with , and when with , the authors prove that the associated Riesz transform is bounded from to the weighted classical Hardy space .

Hide All
[1] Auscher, P.and Martell, J. M., Weighted norm inequalities, off-diagonal estimates and elliptic operators. II. Off-diagonal estimates on spaces of homogeneous type. J. Evol. Equ. 7(2007), no. 2, 265–316.
[2] Auscher, P., Mcintosh, A., and Russ, E., Hardy spaces of differential forms on Riemannian manifolds. J. Geom. Anal. 18(2008), no. 1,192–248.http://dx.doi.Org/10.1007/s12220-007-9003-x
[3] Bui, T. A., Cao, J., Ky, L. D., Yang, D., and Yang, S., Weighted Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Taiwanese J. Math. 17(2013), no. 4, 11271166.
[4] Bui, T. A., Cao, J., Ky, L. D., Yang, D., and Yang, S., Musielak-Orlicz-Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Anal. Geom. Metr. Spaces 1(2013), 69–129.
[5] Bui, T. A. and Li, J., Orlicz-Hardy spaces associated to operators satisfying bounded H functional calculus and Davies-Gaffney estimates. J. Math. Anal. Appl. 373(2011), no. 2, 485–501.http://dx.doi.Org/10.1016/j.jmaa.2O10.07.050
[6] Cao, J., Chang, D.-C., Yang, D., and Yang, S., Weighted local Orlicz-Hardy spaces on domains and their applications in inhomogeneous Dirichlet and Neumann problems. Trans. Amer. Math. Soc. 365(2013), no. 9, 4729–4809.
[7] Chanillo, S. and Wheeden, R. L., Some weighted norm inequalities for the area integral. Indiana Univ. Math. J. 36(1987), no. 2, 277–294.http://dx.doi.Org/10.1512/iumj.1987.36.36016
[8] Chiarenza, F. and Franciosi, M., Quasiconformal mappings and degenerate elliptic and parabolic equations. Matematiche (Catania) 42(1987), no. 1–2,163–170.
[9] Chiarenza, F. and Frasca, M., Boundedness for the solutions of a degenerate parabolic equation. Applicable Anal. 17(1984), no. 4, 243–261.
[10] Chiarenza, F. and Serapioni, R., A remark on a Harnack inequality for degenerate parabolic equations. Rend. Sem. Mat. Univ. Padova 73(1985), 179–190.
[11] Coifman, R. R., Meyer,, Y. and Stein, E. M., Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62(1985), no. 2, 304–335.http://dx.doi.Org/10.1016/0022-1236(85)90007-2
[12] Cruz-Uribe, D. and Rios, C., Gaussian bounds for degenerate parabolic equations. J. Funct. Anal. 255(2008), no. 2, 283–312. http://dx.doi.Org/10.1016/j.jfa.2008.01.017
[13] Cruz-Uribe, D. and Rios, C., The solution of the Kato problem for degenerate elliptic operators with Gaussian bounds. Trans. Amer. Math. Soc. 364(2012), no. 7, 3449–3478.
[14] Cruz-Uribe, D. and Rios, C., The Kato problem for operators with weighted degenerate ellipticity. Trans. Amer. Math. Soc, to appear.
[15] Davies, E. B., Uniformly elliptic operators with measurable coefficients. J. Funct. Anal. 132(1995), no. 1, 141–169.
[16] Duoandikoetxea, J., Fourier analysis. Graduate Studies in Mathematics, 29, American Mathematical Society, Providence, RI, 2001.
[17] Duong, X. T., Hofmann, S., Mitrea, D., Mitrea, M., and Yan, L., Hardy spaces and regularity for the inhomogeneous Dirichlet and Neumann problems. Rev. Mat. Iberoam. 29(2013), no. 1,183–236.http://dx.doi.Org/10.4171/RMI/718
[18] Duong, X. T. and Li, J., Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus. J. Funct. Anal. 264(2013), no. 6,1409–1437.http://dx.doi.0rg/IO.IOI6/j.jfa.2Oi3.OI.OO6
[19] Duong, X. T. and Yan, L., New function spaces of BMO type, the fohn-Nirenberg inequality, interpolation, and applications. Comm. Pure Appl. Math. 58(2005), no. 10,1375–1420.http://dx.doi.Org/10.1OO2/cpa.2OO8O
[20] Duong, X. T. and Yan, L., Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Amer. Math. Soc. 18(2005), no. 4, 943–973.http://dx.doi.Org/10.1090/S0894-0347-05-00496-0
[21] Fabes, E. B., Kenig, C. E., and Serapioni, R. P., The local regularity of solutions of degenerate elliptic equations. Comm. Partial Differential Equations 7(1982), 77–116.
[22] Fefferman, C. and Stein, E. M., Hp spaces of several variables. Acta Math. 129(1972), no. 3–4,137–193.
[23] García-Cuerva, J., Weighted HP spaces. Dissertationes Math. (RozprawyMat.) 162(1979).
[24] Gehring, F. W., The Lp-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130(1973), 265–277.
[25] Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., and Yan, L., Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates. Mem. Amer. Math. Soc. 214(2011), no. 1007.
[26] Hofmann, S. and Martell, J. M., Lp bounds for Riesz transforms and square roots associated to second order elliptic operators. Publ. Mat. 47(2003), no. 2, 497–515. http://dx.doi.Org/10.5565/PUBLMAT_47203_12
[27] Hofmann, S. and Mayboroda, S., Hardy and BMO spaces associated to divergence form elliptic operators. Math. Ann. 344(2009), no. 1, 37–116.
[28] Hofmann, S., Mayborod,a, S. and Mcintosh, A., Second order elliptic operators with complex bounded measurable coefficients in Lp, Sobolev and Hardy spaces. Ann. Sci. Éc. Norm. Super. (4)44(2011), no. 5, 723–800.
[29] Ishige, K., On the behavior of the solutions of degenerate parabolic equations. Nagoya Math. J. 155(1999), 1–26.
[30] Jiang, R., Cheeger-harmonic functions in metric measure spaces revisited. J. Funct. Anal. 266(2014), no. 3, 1373–1394. http://dx.doi.Org/10.1016/j.jfa.2013.11.022
[31] Jiang, R. and Yang, D., New Orlicz-Hardy spaces associated with divergence form elliptic operators. J. Funct. Anal. 258(2010), no. 4, 1167–1224.http://dx.doi.Org/10.1016/j.jfa.2009.10.018
[32] Jiang, R. and Yang, D., Orlicz-Hardy spaces associated with operators satisfying Davies-Gaffney estimates. Commun. Contemp. Math. 13(2011), no. 2, 331–373.http://dx.doi.Org/10.1142/S0219199711004221
[33] Mcintosh, A., Operators which have an H functional calculus. In: Miniconference on operator theory and partial differential equations (North Ryde, 1986), Proc. Centre Math. Anal. Austral. Nat. Univ., 14, Austral. Nat. Univ., Canberra, 1986, pp. 210–231.
[34] Ouhabaz, E. M., Analysis of heat equations on domains. London Mathematical Society Monographs Series, 31, Princeton University Press, Princeton, NJ, 2005.
[35] Russ, E., The atomic decomposition for tent spaces on spaces of homogeneous type. In: CMA/AMSI Research Symposium “Asymptotic Geometric Analysis, Harmonic Analysis, and Related Topics”, Proc. Centre Math. Appl. Austral. Nat. Univ., 42, Austral. Nat. Univ., Canberra, 2007, pp. 125–135.
[36] Stein, E. M., Singular integrals and differentiability properties of functions. Princeton Mathematical Series, 30, Princeton University Press, Princeton, NJ, 1970.
[37] Stein, E. M. and Weiss, G., On the theory of harmonic functions of several variables. I. The theory of Hp-spaces. Acta Math. 103(1960), 25–62.
[38] Yan, L., Classes of Hardy spaces associated with operators, duality theorem and applications. Trans. Amer. Math. Soc. 360(2008), no. 8, 4383–4408.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed