Hostname: page-component-54dcc4c588-hp6zs Total loading time: 0 Render date: 2025-10-13T08:57:31.688Z Has data issue: false hasContentIssue false

On the rate of growth of random analytic functions, with an application to linear dynamics

Published online by Cambridge University Press:  28 August 2025

Kevin Agneessens
Affiliation:
Université de Mons , Département de Mathématique, 20 Place du Parc, 7000 Mons, Belgium e-mail: agneessens.kevin@gmail.com
Karl Grosse-Erdmann*
Affiliation:
Université de Mons , Département de Mathématique, 20 Place du Parc, 7000 Mons, Belgium e-mail: agneessens.kevin@gmail.com

Abstract

We obtain Wiman–Valiron type inequalities for random entire functions and for random analytic functions on the unit disk that improve a classical result of Erdős and Rényi and recent results of Kuryliak and Skaskiv. Our results are then applied to linear dynamics: we obtain rates of growth, outside some exceptional set, for analytic functions that are frequently hypercyclic for an arbitrary chaotic weighted backward shift.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The first author was a Research Fellow of the Fonds de la Recherche Scientifique – FNRS. The second author was supported by the Fonds de la Recherche Scientifique – FNRS under Grant n° CDR J.0078.21.

References

Agneessens, K., Frequently hypercyclic random vectors . Proc. Amer. Math. Soc. 151(2023), 11031117.10.1090/proc/16153CrossRefGoogle Scholar
Agneessens, K., Frequently hypercyclic random vectors. Ph.D. thesis, Université de Mons, 2023.10.1090/proc/16153CrossRefGoogle Scholar
Agneessens, K., Rate of growth of frequently hypercyclic random functions for weighted shifts . Compl. Anal. Oper. Theory 19(2025), Article no. 15, 37 pp.CrossRefGoogle Scholar
Bayart, F. and Matheron, É., Dynamics of linear operators. Cambridge University Press, Cambridge, 2009.CrossRefGoogle Scholar
Drasin, D. and Saksman, E., Optimal growth of entire functions frequently hypercyclic for the differentiation operator . J. Funct. Anal. 263(2012), 36743688.CrossRefGoogle Scholar
Erdős, P. and Rényi, A., On random entire functions . Zastos. Mat. 10(1969), 4755.Google Scholar
Fenton, P. C. and Strumia, M. M., Wiman-Valiron theory in the disc . J. Lond. Math. Soc. 79(2009), no. 2, 478496.CrossRefGoogle Scholar
Grosse-Erdmann, K.-G., On the universal functions of G. R. MacLane . Complex Variables Theory Appl. 15(1990), 193196.Google Scholar
Grosse-Erdmann, K.-G., A note on the Wiman-Valiron inequality . Arch. Math. 124(2025), 6374.10.1007/s00013-024-02061-2CrossRefGoogle Scholar
Grosse-Erdmann, K.-G. and Manguillot, A. P., Linear chaos. Springer, London, 2011.10.1007/978-1-4471-2170-1CrossRefGoogle Scholar
Hayman, W. K., The local growth of power series: A survey of the Wiman-Valiron method . Can. Math. Bull. 17(1974), 317358.10.4153/CMB-1974-064-0CrossRefGoogle Scholar
Hayman, W. K., Subharmonic functions. Vol. 2. Academic Press, Inc, London, 1989.Google Scholar
Jank, G. and Volkmann, L., Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen. Birkhäuser Verlag, Basel, 1985.10.1007/978-3-0348-6621-7CrossRefGoogle Scholar
Kahane, J.-P., Propriétés locales des fonctions à séries de Fourier aléatoires . Stud. Math. 19(1960), 125.10.4064/sm-19-1-1-25CrossRefGoogle Scholar
Kahane, J.-P., Some random series of functions. 2nd ed., Cambridge University Press, Cambridge 1985.Google Scholar
Kovari, T., On the maximum modulus and maximum term of functions analytic in the unit disc . J. Lond. Math. Soc. 41(1966), 129137.10.1112/jlms/s1-41.1.129CrossRefGoogle Scholar
Kuryliak, A., Subnormal independent random variables and Levy’s phenomenon for entire functions . Mat. Stud. 47(2017), no. 1, 1019.Google Scholar
Kuryliak, A. O. and Skaskiv, O. B., Wiman-type inequality in multiple-circular domains: Lévy’s phenomenon and exceptional sets . Ukr. Math. J. 74(2022), 743756.10.1007/s11253-022-02098-yCrossRefGoogle Scholar
Kuryliak, A. O. and Skaskiv, O. B., Sub-Gaussian random variables and Wiman’s inequality for analytic functions . Carpathian Math. Publ. 15(2023), 306314.10.15330/cmp.15.1.306-314CrossRefGoogle Scholar
Kuryliak, A. O., Skaskiv, O. B., and Shapovalovs’ka, L. O., A Wiman-type inequality for functions analytic in a polydisc . Ukr. Math. J. 68(2016), 8393.10.1007/s11253-016-1210-9CrossRefGoogle Scholar
Kuryliak, A., Skaskiv, O., and Skaskiv, S., Lévy’s phenomenon for analytic functions on a polydisc . Eur. J. Math. 6(2020), 138152.10.1007/s40879-019-00363-2CrossRefGoogle Scholar
Kuryliak, A. O., Skaskiv, O. B., and Zrum, O. V., Levy’s phenomenon for entire functions of several variables . Ufa Math. J. 6(2014), no. 2, 111120.CrossRefGoogle Scholar
Lévy, P., Sur la croissance des fonctions entières . Bull. Soc. Math. France. 58(1930), 127149.10.24033/bsmf.1162CrossRefGoogle Scholar
Mouze, A. and Munnier, V., Frequent hypercyclicity of random holomorphic functions for Taylor shifts and optimal growth . J. Anal. Math. 143(2021), 615637.10.1007/s11854-021-0164-5CrossRefGoogle Scholar
Mouze, A. and Munnier, V., Growth of frequently hypercyclic functions for some weighted Taylor shifts on the unit disc . Can. Math. Bull. 64(2021), 264281.10.4153/S0008439520000430CrossRefGoogle Scholar
Mouze, A. and Munnier, V., Growth of hypercyclic functions: A continuous path between $\mathcal{U}$ -frequent hypercyclicity and hypercyclicity . Proc. Edinb. Math. Soc. 67(2024), no. 2, 794829.10.1017/S0013091524000312CrossRefGoogle Scholar
Nikula, M., Frequent hypercyclicity of random entire functions for the differentiation operator . Compl. Anal. Oper. Theory 8(2014), 14551474.10.1007/s11785-013-0328-0CrossRefGoogle Scholar
Rosenbloom, P. C., Probability and entire functions . In: G. Szegö et al., (eds.), Studies in mathematical analysis and related topics, Stanford University Press, Stanford, CA, 1962, pp. 325332.Google Scholar
Rudin, W., Real and complex analysis. 3rd ed., McGraw-Hill Book Co., New York, NY 1987.Google Scholar
Shkarin, S. A., On the growth of $D$ -universal functions . Moscow Univ. Math. Bull. 48(1993), no. 6, 4951.Google Scholar
Skaskiv, O. B. and Kuryliak, A. O., Wiman’s type inequality for analytic and entire functions and $h$ -measure of an exceptional sets . Carpathian Math. Publ. 12(2020), 492498.10.15330/cmp.12.2.492-498CrossRefGoogle Scholar
Steele, J. M., Sharper Wiman inequality for entire functions with rapidly oscillating coefficients . J. Math. Anal. Appl. 123(1987), 550558.10.1016/0022-247X(87)90329-5CrossRefGoogle Scholar
Suleĭmanov, N. M., Wiman-Valiron-type estimates for power series with a finite radius of convergence and their exactness (Russian) . Dokl. Akad. Nauk SSSR 253(1980), 822824. English translation in: Soviet Math. Dokl. 22 (1980), 190–192.Google Scholar
Valiron, G., Sur le maximum du module des fonctions entières . C. R. Acad. Sci. Paris 166(1918), 605608.Google Scholar
Valiron, G., Les théorèmes généraux de M. Borel dans la théorie des fonctions entières . Ann. Sci. École Norm. Sup (3) 37(1920), 219253.10.24033/asens.724CrossRefGoogle Scholar
Valiron, G., Lectures on the general theory of integral functions. Deighton, Bell and Co., Cambridge 1923.Google Scholar
Wiman, A., Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und dem grössten Gliede der zugehörigen Taylor’schen Reihe . Acta Math. 37(1914), 305326.10.1007/BF02401837CrossRefGoogle Scholar