[A] Aristov, O. Yu., Biprojective algebras and operator spaces. J. Math. Sci. (New York)
111(2002), no. 2, 3339–3386.

[ARS] Aristov, O. Yu., Runde, V., and Spronk, N., Operator biflatness of the Fourier algebra and approximate indicators for subgroups. J. Funct. Anal.
209(2004), no. 2, 367–387.

[BCD] Bade, W. G., Curtis, P. C. Jr., and Dales, H. G., Amenability and weak amenability for Beurling and Lipschitz algebras. Proc. London Math. Soc.
55(1987), no. 2, 359–377.

[BL] Blecher, D. and Le Merdy, C., Operator Algebras and Their Modules—An Operator Space Approach.
London Mathematical Society Monographs
30, Clarendon Press, 2004.

[CH] Cowling, M. and Haagerup, U., Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one. Invent. Math.
96(1989), no. 3, 507–549.

[Da] Dales, H. G., Banach Algebras and Automatic Continuity.
London Mathematical Society Monographs
24, Clarendon Press, New York, 2000.

[DGH] Dales, H. G., Ghahramani, F., and Helemskiiĭ, A. Ya., The amenability of measure algebras. J. London Math. Soc.
66(2002), no. 1, 213–226.

[Dav] Davidson, K. R.,
*C***-Algebras by Example*.
Fields Institute Monographs
6, American Mathematical Society, Providence, RI, 1996.

[dCH] de Cannière, J. and Haagerup, U.,Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups. Amer. J. Math.
107(1985), no. 2, 455–500.

[D1] Dorofaeff, B., The Fourier algebra of SL(2, R) ⋊ R*
*^{n}, n ≥ 2*, has no multiplier bounded approximate unit.*
Math. Ann.
297(1993), no. 4, 707–724.

[D2] Dorofaeff, B., Weak amenability and semidirect products in simple Lie groups. Math. Ann.
306(1996), no. 4, 737–742.

[ER] Effros, E. G. and Ruan, Z.-J., Operator Spaces.
London Mathematical Society Monographs
23, Clarendon Press, New York, 2000.

[E] Eymard, P., L’algèbre de Fourier d’un groupe localement compact. Bull. Soc. Math. France
92(1964), 181–236.

[F1] Forrest, B. E., Some Banach algebras without discontinuous derivations. Proc. Amer. Math. Soc.
114(1992), no. 4, 965–970.

[F2] Forrest, B. E., Completely bounded multipliers and ideals in A(*G*) *vanishing on closed subgroups.*
In: Banach Algebras and Their Applications. Contemp. Math.
363, American Mathematical Society, Providence, RI, 2004, pp. 89–94.

[FKLS] Forrest, B. E., Kaniuth, E., Lau, A. T.-M., and Spronk, N., Ideals with bounded approximate identities in Fourier algebras. J. Funct. Anal.
203(2003), no. 1, 286–304.

[FR] Forrest, B. E. and Runde, V., Amenability and weak amenability of the Fourier algebra. Math. Z.
250(2005), no. 4, 731–744.

[FW] Forrest, B. E. and Wood, P. J., Cohomology and the operator space structure of the Fourier algebra and its second dual. Indiana Univ. Math. J.
50(2001), no. 3, 1217–1240.

[HK] Haagerup, U. and Kraus, J., Approximation properties for group C**-algebras and group von Neumann algebras*
. Trans. Amer. Math. Soc.
344(1994), no. 2, 667–699.

[H1] Helemskiĭ, A. Ya., The Homology of Banach and Topological Algebras. (translated from the Russian), Mathematics and its Applications (Soviet Series) 41, Kluwer, Dordrecht, 1989.

[H2] Helemskiĭ, A. Ya., Some aspects of topological homology since 1995: a survey.
In: Banach Algebras and Their Applications. Contemp. Math.
363, American Mathematical Society, Providence, RI, 2004, pp. 145–179.

[IS] Ilie, M. and Spronk, N., Completely bounded homomorphisms of the Fourier algebras. J. Funct. Anal.
225(2005), no. 2, 480–499.

[J1] Johnson, B. E., Cohomology in Banach algebras.
Memoirs of the American Mathematical Society
127,. American Mathematical Society, Providence, RI, 1972.

[J2] Johnson, B. E., Weak amenability of group algebras. Bull. London Math. Soc.
23(1991), no. 3, 281–284.

[J3] Johnson, B. E., Non-amenability of the Fourier algebra of a compact group. J. London Math. Soc.
50(1994), no. 2, 361–374.

[KL] Kaniuth, E. and Lau, A. T.-M., Spectral synthesis A(*G*) and for subspaces of VN(*G*)*.*
Proc. Amer. Math. Soc.
129(2001), no. 11, 3253–3263.

[LNR] Lambert, A., Neufang, M., and Runde, V., Operator space structure and amenability for Figà-Talamanca–Herz algebras. J. Funct. Anal.
211(2004), no. 1, 245–269.

[Le] Leptin, H., Sur l’algèbre de Fourier d’un groupe localement compact. C. R. Acad. Sci. Paris Sér. A-B
266(1968), A1180–A1182.

[LRRW] Loy, R. J., Read, C. J., Runde, V., and Willis, G. A., Amenable and weakly amenable Banach algebras with compact multiplication. J. Funct. Anal.
171(2000), no. 1, 78–114.

[R] Ruan, Z.-J., The operator amenability of A(*G*). Amer. J. Math.
117(1995), no. 6, 1449–1474.

[Ru1] Runde, V., Lectures on Amenability.
Lecture Notes in Mathematics
1774, Springer-Verlag, Berlin, 2002.

[Ru2] Runde, V., Amenability for dual Banach algebras. Studia Math.
148(2001), no. 1, 47–66.

[Ru3] Runde, V., Connes-amenability and normal, virtual diagonals for measure algebras. I. J. London Math. Soc.
67(2003), no. 3, 643–656.

[Ru4] Runde, V., Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule. Math. Scand.
95(2004), no. 1, 124–144.

[Ru5] Runde, V., Applications of operator spaces to abstract harmonic analysis. Expo. Math.
22(2004), no. 4, 317–363.

[Ru6] Runde, V., The amenability constant of the Fourier algebra. Proc. Amer. Math. Soc.
134(2006), no. 5, 1473–1481.(electronic).

[RS] Runde, V. and Spronk, N., Operator amenability of Fourier-Stieltjes algebras. Math. Proc. Cambridge Phil. Soc.
136(2004), no. 3, 675–686.

[S1] Spronk, N., Operator weak amenability of the Fourier algebra. Proc. Amer. Math. Soc.
130(2002), no. 12, 3609–3617.

[S2] Spronk, N., Measurable Schur multipliers and completely bounded multipliers of the Fourier algebras. Proc. London Math. Soc.
89(2004), no. 1, 161–192.

[W1] Wood, P. J., Complemented ideals in the Fourier algebra of a locally compact group. Proc. Amer. Math. Soc.
128(2000), no. 2, 445–451.

[W2] Wood, P. J., The operator biprojectivity of the Fourier algebra. Canad. J. Math.
54(2002), no. 5, 1100–1120.