Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T02:02:58.554Z Has data issue: false hasContentIssue false

Refinements of Katz–Sarnak theory for the number of points on curves over finite fields

Published online by Cambridge University Press:  09 January 2024

Jonas Bergström
Affiliation:
Department of Mathematics, Stockholms Universitet, Stockholm, Sweden e-mail: jonasb@math.su.se
Everett W. Howe
Affiliation:
Independent mathematician, San Diego, CA, United States e-mail: however@alumni.caltech.edu
Elisa Lorenzo García*
Affiliation:
Faculté des sciences, Institut de Mathématiques, Université de Neuchâtel, Neuchâtel, Switzerland
Christophe Ritzenthaler
Affiliation:
Laboratoire J.A. Dieudonné, Université Côte d’Azur, Nice, France e-mail: christophe.ritzenthaler@univ-rennes1.fr

Abstract

This paper goes beyond Katz–Sarnak theory on the distribution of curves over finite fields according to their number of rational points, theoretically, experimentally, and conjecturally. In particular, we give a formula for the limits of the moments measuring the asymmetry of this distribution for (non-hyperelliptic) curves of genus $g\geq 3$. The experiments point to a stronger notion of convergence than the one provided by the Katz–Sarnak framework for all curves of genus $\geq 3$. However, for elliptic curves and for hyperelliptic curves of every genus, we prove that this stronger convergence cannot occur.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achter, J. D., Erman, D., Kedlaya, K. S., Wood, M. M., and Zureick-Brown, D., A heuristic for the distribution of point counts for random curves over finite field . Philos. Trans. Roy. Soc. A 373(2015), no. 2040, Article no. 20140310, 12 pp. https://doi.org/10.1098/rsta.2014.0310 CrossRefGoogle Scholar
Ahmadi, O. and Shparlinski, I. E., On the distribution of the number of points on algebraic curves in extensions of finite fields . Math. Res. Lett. 17(2010), no. 4, pp. 689699. https://doi.org/10.4310/MRL.2010.v17.n4.a9CrossRefGoogle Scholar
Apostol, T. M., Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York–Heidelberg, 1976. https://doi.org/10.1007/978-3-662-28579-4.Google Scholar
Barnet-Lamb, T., Geraghty, D., Harris, M., and Taylor, R., A family of Calabi–Yau varieties and potential automorphy II . Publ. Res. Inst. Math. Sci. 47(2011), no. 1, 2998. https://doi.org/10.2977/PRIMS/31CrossRefGoogle Scholar
Bergström, J., Cohomology of moduli spaces of curves of genus three via point counts . J. Reine Angew. Math. 622(2008), 155187. https://doi.org/10.1515/CRELLE.2008.068 Google Scholar
Bergström, J., Diaconu, A., Petersen, D., and Westerland, C., Hyperelliptic curves, the scanning map, and moments of families of quadratic $l$ -functions. Preprint, 2023. arXiv:2302.07664.Google Scholar
Bergström, J. and Faber, C., Cohomology of moduli spaces via a result of Chenevier and Lannes. Épijournal Géom. Algébrique, 7:14, 2023, Art. 20. https://doi.org/10.1007/s41468-022-00099-1.CrossRefGoogle Scholar
Bergström, J., Faber, C., and van der Geer, G., Siegel modular forms of degree three and the cohomology of local systems . Selecta Math. (N.S.) 20(2014), no. 1, 83124. https://doi.org/10.1007/s00029-013-0118-6 CrossRefGoogle Scholar
Bergström, J., Howe, E. W., García, E. L., and Ritzenthaler, C., Lower bounds on the maximal number of rational points on curves over finite fields . Math. Proc. Cambridge Philos. Soc. 176(2024), 213238. https://doi.org/10.1017/S0305004123000476 CrossRefGoogle Scholar
Billingsley, P., Probability and measure, 3rd ed., Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1995; A Wiley-Interscience Publication. https://worldcat.org/en/title/30735805.Google Scholar
Birch, B. J., How the number of points of an elliptic curve over a fixed prime field varies . J. Lond. Math. Soc. 43(1968), 5760. https://doi.org/10.1112/jlms/s1-43.1.57 CrossRefGoogle Scholar
Bogachev, V. I., Weak convergence of measures, Mathematical Surveys and Monographs, 234, American Mathematical Society, Providence, RI, 2018. https://doi.org/10.1090/surv/234 CrossRefGoogle Scholar
Bucur, A., Costa, E., David, C., Guerreiro, J., and Lowry-Duda, D., Traces, high powers and one level density for families of curves over finite fields . Math. Proc. Cambridge Philos. Soc. 165(2018), no. 2, 225248. https://doi.org/10.1017/S030500411700041XCrossRefGoogle Scholar
Bucur, A., David, C., Feigon, B., and Lalín, M., Fluctuations in the number of points on smooth plane curves over finite fields . J. Number Theory 130(2010), no. 11, 25282541. https://doi.org/10.1016/j.jnt.2010.05.009CrossRefGoogle Scholar
Carlitz, L., The arithmetic of polynomials in a Galois field . Amer. J. Math. 54(1932), no. 1, pp. 3950. https://doi.org/10.2307/2371075CrossRefGoogle Scholar
Cohen, R. L. and Madsen, I., Surfaces in a background space and the homology of mapping class groups . In: Algebraic geometry—Seattle 2005. Part 1, Proceedings of Symposia in Pure Mathematics, 80, American Mathematical Society, Providence, RI, 2009, pp. 4376. https://doi.org/10.1090/pspum/080.1/2483932Google Scholar
Cojocaru, A. C., Davis, R., Silverberg, A., and Stange, K. E., Arithmetic properties of the Frobenius traces defined by a rational abelian variety (with two appendices by J-P. Serre) . Int. Math. Res. Not. IMRN 2017(2017), no. 12, 35573602. https://doi.org/10.1093/imrn/rnw058Google Scholar
Cox, D. A., Primes of the form x 2 + ny 2: Fermat, class field theory, and complex multiplication, 2nd ed., Pure and Applied Mathematics, John Wiley & Sons, Inc., Hoboken, NJ, 2013. https://doi.org/10.1002/9781118400722Google Scholar
Deligne, P., Formes modulaires et représentations l-adiques. In: Séminaire Bourbaki. Volume 1968/69: Exposés 347–363, Lecture Notes in Mathematics, 175, Springer, Berlin, 1971, pp. 139172 (Exp. No. 355). https://doi.org/10.1007/BFb0058810CrossRefGoogle Scholar
Deligne, P., La conjecture de Weil. II . Publ. Math. Inst. Hautes Études Sci. 52(1980), 137252. http://www.numdam.org/item/PMIHES_1980__52__137_0/.CrossRefGoogle Scholar
Deuring, M., Die Typen der Multiplikatorenringe elliptischer Funktionenkörper . Abh. Math. Sem. Hansischen Univ. 14(1941), 197272. https://doi.org/10.1007/BF02940746CrossRefGoogle Scholar
Fité, F., Kedlaya, K. S., Rotger, V., and Sutherland, A. V., Sato–Tate distributions and Galois endomorphism modules in genus 2 . Compos. Math. 148(2012), no. 5, 13901442. https://doi.org/10.1112/S0010437X12000279CrossRefGoogle Scholar
Fulton, W. and Harris, J., Representation theory: A first course, Graduate Texts in Mathematics, 129, Readings in Mathematics, Springer-Verlag, New York, 1991. https://doi.org/10.1007/978-1-4612-0979-9Google Scholar
Hain, R. M., Torelli groups and geometry of moduli spaces of curves . In: Current topics in complex algebraic geometry (Berkeley, CA, 1992/93), Mathematical Sciences Research Institute Publications, 28, Cambridge University Press, Cambridge, 1995, pp. 97143. http://library.msri.org/books/Book28/files/hain.pdf.Google Scholar
Hammonds, T., Kim, S., Logsdon, B., Lozano-Robledo, Á., and Miller, S. J., Rank and bias in families of hyperelliptic curves via Nagao’s conjecture . J. Number Theory 215(2020), 339361. https://doi.org/10.1016/j.jnt.2020.04.017CrossRefGoogle Scholar
Howe, E. W., Variations in the distribution of principally polarized abelian varieties among isogeny classes . Ann. H. Lebesgue 5(2022), 677702. https://doi.org/10.5802/ahl.133CrossRefGoogle Scholar
Johnson, D., The structure of the Torelli group. I. A finite set of generators for J . Ann. of Math. (2) 118(1983), no. 3, 423442. https://doi.org/10.2307/2006977CrossRefGoogle Scholar
Kabanov, A. I., The second cohomology with symplectic coefficients of the moduli space of smooth projective curves . Compos. Math. 110(1998), no. 2, 163186. https://doi.org/10.1023/A:1000256302432CrossRefGoogle Scholar
Katz, N. M. and Sarnak, P., Random matrices, Frobenius eigenvalues, and monodromy, American Mathematical Society Colloquium Publications, 45, American Mathematical Society, Providence, RI, 1999. https://doi.org/10.1090/coll/045Google Scholar
Kedlaya, K. S. and Sutherland, A. V., Hyperelliptic curves, L-polynomials, and random matrices. In: Arithmetic, geometry, cryptography and coding theory, Contemporary Mathematics, 487, American Mathematical Society, Providence, RI, 2009, pp. 119162. https://doi.org/10.1090/conm/487/09529CrossRefGoogle Scholar
Lachaud, G., On the distribution of the trace in the unitary symplectic group and the distribution of Frobenius . In: Frobenius distributions: Lang–Trotter and Sato–Tate conjectures, Contemporary Mathematics, 663. American Mathematical Society, Providence, RI, 2016, pp. 185221. https://doi.org/10.1090/conm/663/13355CrossRefGoogle Scholar
Lauter, K., The maximum or minimum number of rational points on genus three curves over finite fields . Compos. Math. 134(2002), no. 1, 87111; With an appendix by Jean-Pierre Serre. https://doi.org/10.1023/A:1020246226326CrossRefGoogle Scholar
Leont’ev, V. K., On the roots of random polynomials over a finite field . Math. Notes 80(2006), nos. 1–2, 300304. English translation of [Leo06b]. https://doi.org/10.1007/s11006-006-0139-yCrossRefGoogle Scholar
Leont’ev, V. K., On the roots of random polynomials over a finite field . Mat. Zametki 80(2006), no. 2, 313316. https://doi.org/10.4213/mzm2812Google Scholar
Lercier, R., Ritzenthaler, C., Rovetta, F., and Sijsling, J., Parametrizing the moduli space of curves and applications to smooth plane quartics over finite fields . LMS J. Comput. Math. 17(2014), no. suppl. A, 128147. https://doi.org/10.1112/S146115701400031XCrossRefGoogle Scholar
Lercier, R., Ritzenthaler, C., Rovetta, F., Sijsling, J., and Smith, B., Distributions of traces of Frobenius for smooth plane curves over finite fields . Exp. Math. 28(2019), no. 1, 3948. https://doi.org/10.1080/10586458.2017.1328321CrossRefGoogle Scholar
Looijenga, E., Stable cohomology of the mapping class group with symplectic coefficients and of the universal Abel–Jacobi map . J. Algebraic Geom. 5(1996), no. 1, 135150.Google Scholar
Ma, Z. Y., Refinements on vertical Sato–Tate. Preprint, 2023. arXiv:2310.08791.Google Scholar
Miller, J., Patzt, P., Petersen, D., and Randal-Williams, O.. Uniform twisted homological stability . https://arxiv.org/abs/2402.00354.Google Scholar
Petersen, D., Cohomology of local systems on the moduli of principally polarized abelian surfaces . Pacific J. Math. 275(2015), no. 1, 3961. https://doi.org/10.2140/pjm.2015.275.39CrossRefGoogle Scholar
Petersen, D., Tautological rings of spaces of pointed genus two curves of compact type . Compos. Math. 152(2016), no. 7, 13981420. https://doi.org/10.1112/S0010437X16007478CrossRefGoogle Scholar
Petersen, D., Tavakol, M., and Yin, Q., Tautological classes with twisted coefficients . Ann. Sci. Éc. Norm. Supér. (4) 54(2021), no. 5, 11791236. https://doi.org/10.24033/asens.2479CrossRefGoogle Scholar
Scheffé, H., A useful convergence theorem for probability distributions . Ann. Math. Statistics 18(1947), 434438. https://doi.org/10.1214/aoms/1177730390CrossRefGoogle Scholar
Serre, J.-P., Nombres de points des courbes algébriques sur ${\boldsymbol{F}}_q$ . In: Seminar on number theory, 1982–1983 (Talence, 1982/1983), University of Bordeaux I, Talence, France, 1983, p. 8 (Exp. No. 22). https://www.digizeitschriften.de/dms/resolveppn/?PID=GDZPPN002545039.Google Scholar
Stembridge, J. R., A Maple package for symmetric functions . J. Symbolic Comput. 20(1995), nos. 5–6, 755768. This package is available at https://www.math.lsa.umich.edu/jrs/maple.html. https://doi.org/10.1006/jsco.1995.1077CrossRefGoogle Scholar
Sun, S., $L$ -series of Artin stacks over finite fields . Algebra Number Theory 6(2012), no. 1, 47122. https://doi.org/10.2140/ant.2012.6.47CrossRefGoogle Scholar
van der Geer, G. and van der Vlugt, M., Supersingular curves of genus $2$ over finite fields of characteristic $2$ . Math. Nachr. 159(1992), 7381. https://doi.org/10.1002/mana.19921590106CrossRefGoogle Scholar
Vlăduţ, S. G., Isogeny class and Frobenius root statistics for abelian varieties over finite fields . Mosc. Math. J. 1(2001), no. 1, 125139. https://doi.org/10.17323/1609-4514-2001-1-1-125-139CrossRefGoogle Scholar
Wahl, N., Homological stability for mapping class groups of surfaces . In: Handbook of moduli. Volume III, Advanced Lectures in Mathematics (ALM), 26, International Press, Somerville, MA, 2013, pp. 547583.Google Scholar
Watanabe, T., On the completion of the mapping class group of genus two . J. Algebra 501(2018), 303327. https://doi.org/10.1016/j.jalgebra.2018.01.003CrossRefGoogle Scholar