Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-4nk8m Total loading time: 0.191 Render date: 2021-10-24T15:57:08.837Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Reversibility of Interacting Fleming–Viot Processes with Mutation, Selection, and Recombination

Published online by Cambridge University Press:  20 November 2018

Shui Feng
Affiliation:
Department of Mathematics and Statistics, McMaster University, Hamilton, ON email: shuifeng@mcmaster.ca
Byron Schmuland
Affiliation:
Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB email: schmu@stat.ualberta.ca
Jean Vaillancourt
Affiliation:
Université du Québec en Outaouais, Gatineau, QC email: jean.vaillancourt@uqo.ca
Xiaowen Zhou
Affiliation:
Department of Mathematics and Statistics, Concordia University, Montreal, QC email: xzhou@mathstat.concordia.ca
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Reversibility of the Fleming-Viot process with mutation, selection, and recombination is well understood. In this paper, we study the reversibility of a system of Fleming-Viot processes that live on a countable number of colonies interacting with each other through migrations between the colonies. It is shown that reversibility fails when both migration and mutation are non-trivial.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2011

References

[1] Dawson, D. A., Greven, A., and Vaillancourt, J., Equilibria and quasiequilibria for infinite collections of interacting Fleming-Viot processes. Trans. Amer. Math. Soc. 347 (1995), no. 7, 2277-2360. doi:10.2307/2154827Google Scholar
[2] Dawson, D. A. and Greven, A., Hierarchically interacting Fleming-Viot processes with selection and mutation: multiple space time scale analysis and quasi-equilibria. Electron. J. Probab. 4 (1999), no. 4, 1-81.Google Scholar
[3] Ethier, S. N., The infinitely-many-neutral-alleles diffusion model with ages. Adv. Appl. Probab. 22 (1990), no. 1, 1-24. doi:10.2307/1427594Google Scholar
[4] Ethier, S. N. and Kurtz, T. G., Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics, JohnWiley ' Sons, New York, 1986.CrossRefGoogle Scholar
[5] Ethier, S. N. and Kurtz, T. G., Fleming-Viot processes in population genetics. SIAM J. Control Optim. 31 (1993), no. 2, 345-386. doi:10.1137/0331019Google Scholar
[6] Ethier, S. N. and Kurtz, T. G., Convergence to Fleming-Viot processes in the weak atomic topology. Stochastic Process. Appl. 54 (1994), no. 1, 1-27. doi:10.1016/0304-4149(94)00006-9Google Scholar
[7] Handa, K., A measure-valued diffusion process describing the stepping stone model with infinitely many alleles. Stochastic Process. Appl. 36 (1990), no. 2, 269-296. doi:10.1016/0304-4149(90)90096-BGoogle Scholar
[8] Handa, K., Quasi-invariance and reversibility in the Fleming-Viot process. Probab. Theory Related Fields 122 (2002), no. 4, 545-566. doi:10.1007/s004400100178Google Scholar
[9] Kermany, A. R. R., Zhou, X., and Hickey, D. A., Joint stationary moments of a two-island diffusion model of population subdivision. Theoret. Pop. Biol. 74 (2008), 226-232.Google Scholar
[10] Li, Z. H., Shiga, T., and Yao, L., A reversibility problem for Fleming-Viot processes. Electron. Comm. Probab. 4 (1999), 65-76.Google Scholar
[11] Overbeck, L. and, Röckner, M., Geometric aspects of finite- and infinite-dimensional Fleming-Viot processes. Random Oper. Stochastic Equations 5 (1997), no. 1, 35-58. doi:10.1515/rose.1997.5.1.35Google Scholar
[12] Schmuland, B. and, Sun, W., A cocycle proof that reversible Fleming-Viot processes have uniform mutation. C. R. Math. Acad. Sci. Soc. R. Can. 24 , no. 3, 124-128.Google Scholar
[13] Shiga, T., An interacting system in population genetics. I and II. J. Math. Kyoto Univ. 20 (1980), no. 2, 213-242; and no. 4, 723-733.Google Scholar
[14] Shiga, T., A stochastic equation based on a Poisson system for a class of measure-valued diffusion processes. J. Math. Kyoto Univ. 30 (1990), 245-279.Google Scholar
[15] Shiga, T. and, Uchiyama, K., Stationary states and their stability of the stepping stone model involving mutation and selection. Probab. Theory Relat. Fields 73 (1986), no. 1, 87-117. doi:10.1007/BF01845994Google Scholar
You have Access
1
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Reversibility of Interacting Fleming–Viot Processes with Mutation, Selection, and Recombination
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Reversibility of Interacting Fleming–Viot Processes with Mutation, Selection, and Recombination
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Reversibility of Interacting Fleming–Viot Processes with Mutation, Selection, and Recombination
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *