Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T22:29:34.742Z Has data issue: false hasContentIssue false

Titchmarsh’s Method for the Approximate Functional Equations for $\unicode[STIX]{x1D701}^{\prime }(s)^{2}$, $\unicode[STIX]{x1D701}(s)\unicode[STIX]{x1D701}^{\prime \prime }(s)$, and $\unicode[STIX]{x1D701}^{\prime }(s)\unicode[STIX]{x1D701}^{\prime \prime }(s)$

Published online by Cambridge University Press:  09 January 2019

Jun Furuya
Affiliation:
Department of Integrated Human Sciences (Mathematics), Hamamatsu University School of Medicine, Handayama 1-20-1, Shizuoka 431-3192, Japan Email: jfuruya@hama-med.ac.jp
T. Makoto Minamide
Affiliation:
Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512, Japan Email: minamide@yamaguchi-u.ac.jp
Yoshio Tanigawa
Affiliation:
Graduate School of Mathematics, Nagoya University, Furo-cho, Nagoya 464-8602, Japan Email: tanigawa@math.nagoya-u.ac.jp

Abstract

Let $\unicode[STIX]{x1D701}(s)$ be the Riemann zeta function. In 1929, Hardy and Littlewood proved the approximate functional equation for $\unicode[STIX]{x1D701}^{2}(s)$ with error term $O(x^{1/2-\unicode[STIX]{x1D70E}}((x+y)/|t|)^{1/4}\log |t|)$, where $-1/2<\unicode[STIX]{x1D70E}<3/2,x,y\geqslant 1,xy=(|t|/2\unicode[STIX]{x1D70B})^{2}$. Later, in 1938, Titchmarsh improved the error term by removing the factor $((x+y)/|t|)^{1/4}$. In 1999, Hall showed the approximate functional equations for $\unicode[STIX]{x1D701}^{\prime }(s)^{2},\unicode[STIX]{x1D701}(s)\unicode[STIX]{x1D701}^{\prime \prime }(s)$, and $\unicode[STIX]{x1D701}^{\prime }(s)\unicode[STIX]{x1D701}^{\prime \prime }(s)$ (in the range $0<\unicode[STIX]{x1D70E}<1$) whose error terms contain the factor $((x+y)/|t|)^{1/4}$. In this paper we remove this factor from these three error terms by using the method of Titchmarsh.

MSC classification

Type
Article
Copyright
© Canadian Mathematical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was supported by JSPS KAKENHI: 26400030, 15K17512 and 15K04778.

References

Akatsuka, H., Conditional estimates for error terms related to distribution of zeros of 𝜁 (s) . J. Number Theory 132(2012), 22422257. https://doi.org/10.1016/j.jnt.2012.04.012.Google Scholar
Andrews, G. E., Askey, R., and Roy, R., Special functions . Encyclopedia of Mathematics and Its Applications, 71 . Cambridge University Press, 1999.Google Scholar
Aoki, M. and Minamide, M., A zero density estimate of the derivatives of the Riemann zeta function . JANTA 2(2012), 361375.Google Scholar
Banerjee, D. and Minamide, M., On averages of the error term of a new kind of the divisor problem . J. Math. Anal. Appl. 438(2016), 533550. https://doi.org/10.1016/j.jmaa.2016.02.013.Google Scholar
Berndt, B. C., The number of zeros for 𝜁(k)(s) . J. London Math. Soc. 2(1970), 577580. https://doi.org/10.1112/jlms/2.Part_4.577.Google Scholar
Conrey, J. B., The fourth moment of derivatives of Riemann zeta-function . Quart. J. Oxford 39(1988), 2136. https://doi.org/10.1093/qmath/39.1.21.Google Scholar
Furuya, J., Minamide, M., and Tanigawa, Y., Representations and evaluations of the error term in a certain divisor problem . Math. Slovaca 66(2016), 575582. https://doi.org/10.1515/ms-2015-0160.Google Scholar
Furuya, J., Minamide, M., and Tanigawa, Y., On a restricted divisor problem . J. Indian Math. Soc. 83(2016), 269287.Google Scholar
Gonek, S. M., Mean values of the Riemann zeta-function and its derivatives . Invent. Math. 75(1984), 123141. https://doi.org/10.1007/BF01403094.Google Scholar
Hall, R. R., The behaviour of the Riemann zeta-function on the critical line . Mathematika 46(1999), 281313. https://doi.org/10.1112/S0025579300007762.Google Scholar
Hardy, G. H. and Littlewood, J. E., The approximate functional equation in the theory of the zeta-functions, with applications to the divisor-problems of Dirichlet and Piltz . Proc. London Math. Soc. (2) 21(1923), 3974. https://doi.org/10.1112/plms/s2-21.1.39.Google Scholar
Hardy, G. H. and Littlewood, J. E., The approximate functional equations for 𝜁(s) and 𝜁2(s) . Proc. London Math. Soc. (2) 29(1929), 8197. https://doi.org/10.1112/plms/s2-29.1.81.Google Scholar
Heath-Brown, D. R., The fourth power moment of the Riemann zeta-function . Proc. London Math. Soc. (3) 38(1979), 385422. https://doi.org/10.1112/plms/s3-38.3.385.Google Scholar
Ingham, A. E., Mean-value theorems in the theory of the Riemann zeta-function . Proc. London Math. Soc. 27(1926), 273300.Google Scholar
Ivić, A., The Riemann zeta-function . Wiley, New York, 1985.Google Scholar
Levinson, N. and Montgomery, H. L., Zeros of derivatives of the Riemann zeta-functions . Acta Math. 133(1974), 4965. https://doi.org/10.1007/BF02392141.Google Scholar
Minamide, M., On the truncated Voronoï formula for the derivative of the Riemann zeta function . Indian J. Math. 55(2013), 325352.Google Scholar
Speiser, A., Geometrisches zur Riemann Zetafuncktion . Math. Ann. 110(1934), 514521. https://doi.org/10.1007/BF01448042.Google Scholar
Spira, R., Zero-free regions of 𝜁(k)(s) . J. London Math. Soc. 40(1965), 677682. https://doi.org/10.1112/jlms/s1-40.1.677.Google Scholar
Spira, R., Another zero-free region for 𝜁(k)(s) . Proc. Amer. Math. Soc. 26(1970), 246247.Google Scholar
Spira, R., Zeros of 𝜁 (s) and the Riemann hypothesis . Illinois J. Math. 17(1973), 147152.Google Scholar
Titchmarsh, E. C., The approximate functional equation for 𝜁2(s) . Quart. J. Math. 9(1938), 109114.Google Scholar
Titchmarsh, E. C., The theory of the Riemann zeta-function, Second edition. Revised by D. R. Heath-Brown, Oxford University Press, New York, 1986.Google Scholar